• Title/Summary/Keyword: Behavior-response performance

Search Result 706, Processing Time 0.026 seconds

지반의 비선형성을 고려한 암반지진에 의한 구조물의 수평방향 탄성거동 (Elastic Horizontal Response of a Structure to Bedrock Earthquake Considering the Nonlinearity of the Soil Layer)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제6권3호
    • /
    • pp.53-62
    • /
    • 2002
  • 지반조건은 구조물의 지진거동에 매우 큰 영향을 미치고 성능에 기준한 내진설계에 중요한 요소이다. 이 논문에서는 지진에 의한 지반의 비선형성을 포함한 지반의 비선형성이 구조물의 탄성지진거동에 미치는 영향을 지반 구조물 일괄해석 유한요소법과 지반의 비선형성을 구현하기 위해 Ramberg-Osgood 토질모델에 대한 근사선형 반복해석법으로 연구하였다. 연구는 말뚝기초의 유무를 고려한 주기가 변하는 선형 단자유도계에 지표에서 기록된 1940년 EI Centre지진을 적용하여 수행하였다. 연구결과에 의하면 연약지반의 비선형 특성 영향이 구조물의 탄성 지진거동에 매우 중요하곡 성능에 기준한 지반의 비선형성을 고려한 구조물의 내진설계가 필요하다는 것을 잘 보여주고 있다.

Performance-based design of tall buildings for wind load and application of response modification factor

  • Alinejad, Hamidreza;Jeong, Seung Yong;Kang, Thomas H.K.
    • Wind and Structures
    • /
    • 제31권2호
    • /
    • pp.153-164
    • /
    • 2020
  • In the design of buildings, lateral loading is one of the most important factors considered by structural designers. The concept of performance-based design (PBD) is well developed for seismic load. Whereas, wind design is mainly based on elastic analysis for both serviceability and strength. For tall buildings subject to extreme wind load, inelastic behavior and application of the concept of PBD bear consideration. For seismic design, current practice primarily presumes inelastic behavior of the structure and that energy is dissipated by plastic deformation. However, due to analysis complexity and computational cost, calculations used to predict inelastic behavior are often performed using elastic analysis and a response modification factor (R). Inelastic analysis is optionally performed to check the accuracy of the design. In this paper, a framework for application of an R factor for wind design is proposed. Theoretical background on the application and implementation is provided. Moreover, seismic and wind fatigue issues are explained for the purpose of quantifying the modification factor R for wind design.

Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames

  • Zahrai, Seyed Mehdi;Jalali, Meysam
    • Steel and Composite Structures
    • /
    • 제16권1호
    • /
    • pp.1-21
    • /
    • 2014
  • Knee Braced Frame (KBF) is a special form of ductile eccentrically braced frame having a diagonal brace connected to a knee element, as a hysteretic damper, instead of beam-column joint. This paper first presents an experimental investigation on cyclic performance of two knee braced single span one-story frame specimens. The general test arrangement, specimen details, and most relevant results (failure modes and hysteretic curves) are explained. Some indexes to assess the seismic performance of KBFs, including ductility; response reduction factor and energy dissipation capabilities are also subsequently discussed. Experimental results indicate that the maximum equivalent damping ratios achieved by test frames are 21.8 and 23% for the specimens, prior to failure. Finally, a simplified analytical model is derived to predict the bilinear behavior of the KBFs. Acceptable conformity between analytical and experimental results proves the accuracy of the proposed model.

구조변수에 의한 튜브 구조의 거동 (Behaviour of Tube Structures in terms of Structural Parameters)

  • 이강건;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 2002
  • The global behavior of tube structures (including tube and tube(s)-in-tube constructions) is investigated for the behavioral characteristics of the structures and their performance in relation to the various structural parameters. The stiffness factor in terms of the axial stiffness of the columns and the bending stiffness of both columns and beams is chosen as a parameter to explain the global behavior of the structures. The shear-lag phenomenon is also discussed to explain the general behavior of the structures. Three types of tube structures, with various structural parameters, are analysed for the comparative study, and the results are compared to investigate the structural response and performance of such structures. As a result of the comparison it is obtained that the axial stiffness of the columns is the most important factor governing the response of the tube structures under lateral loading

  • PDF

경계작업 척도로서의 안구운동 특성 (Saccadic Movement as a Performance Measure of Vigilance Task)

  • 이면우;이관행;조영진
    • 대한산업공학회지
    • /
    • 제8권1호
    • /
    • pp.13-21
    • /
    • 1982
  • Experiments on the eye movement behavior were performed using Vidicon Eye Camera. Factorial design ( $3{\times}3$) was used to evaluate the validity of the eye movement as a performance measure in vigilance task. Eye movement data were recorded in video tapes, then the data were converted to digital signals, which were reduced to quantitative fixation and saccadic movement data by a microcomputer. To compare with existing vigilance performance measures, response time and the number of false alarms were also recorded. The results showed that the saccadic movement is a good measure of the performance in vigilance task : 1. Both the response time and the saccadic movement increased significantly during the initial two time blocks. 2. High correlations were shown between the response time and the saccadic movement. 3. The locational uncertainty affects the saccadic movement, the number of fixations, the response time but doesn't affect the duration of eye fixations.

  • PDF

능력스펙트럼법을 이용한 성능점 결정에서 지진기록이 미치는 영향 (Effects of Earthquake Ground Motion Sets on Performance Point of Capacity Spectrum Method)

  • 김선우;한상환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.523-528
    • /
    • 2001
  • The Capacity Spectrum Method (CSM) was first introduced in the 1970's as rapid evaluation procedure. The procedure compares the capacity of the structure (in the form of a pushover curve) with the demands on the structure (in the form of a response spectrum). The graphical intersection of the two curves approximates the response of the structure. In order to account for nonlinear inelastic behavior of the structural system, effective ductility ratios(μ) are applied to the elastic-linear response spectrum to imitate an inelastic response spectrum. CSM in ATC-40 has deficiencies such as performance point does not converge and the peak deformation of inelastic systems is to be inaccurate when compared against results of nonlinear response history analysis. The purpose of this paper is to investigate the variation of performance points of Capacity Spectrum Method (CSM) are investigated with respect to the different sets of earthquake ground motions. The earthquake sets were used in this study selected by Miranda(1993), Riddell(1991), Seed et al. (1976).

  • PDF

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

Seismic performance of a wall-frame air traffic control tower

  • Moravej, Hossein;Vafaei, Mohammadreza;Abu Bakar, Suhaimi
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.463-482
    • /
    • 2016
  • Air Traffic Control (ATC) towers play significant role in the functionality of each airport. In spite of having complex dynamic behavior and major role in mitigating post-earthquake problems, less attention has been paid to the seismic performance of these structures. Herein, seismic response of an existing ATC tower with a wall-frame structural system that has been designed and detailed according to a local building code was evaluated through the framework of performance-based seismic design. Results of this study indicated that the linear static and dynamic analyses used for the design of this tower were incapable of providing a safety margin for the required seismic performance levels especially when the tower was subjected to strong ground motions. It was concluded that, for seismic design of ATC towers practice engineers should refer to a more sophisticated seismic design approach (e.g., performance-based seismic design) which accounts for inelastic behavior of structural components in order to comply with the higher seismic performance objectives of ATC towers.

Seismic behavior of suspended building structures with semi-rigid connections

  • Liu, Yuxin;Lu, Zhitao
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.415-448
    • /
    • 2014
  • A method is presented in this paper to analyze the dynamic response behavior of suspended building structures. The effect of semi-rigid connections that link suspended floors with their supporting structure on structural performance is investigated. The connections, like the restrains in non-structural suspended components, are designed as semi-rigid to avoid pounding and as energy dissipation components to reduce structural response. Parametric study is conducted to assess the dynamic characteristics of suspended building structures with varying connection stiffness and suspended mass ratios. Modal analysis is applied to identify the two distinct sets of vibration modes, pendulum and bearing, of a suspended building structure. The cumulative modal mass is discussed to ensure the accuracy in applying the method of response spectrum analysis by SRSS or CQC modal combination. Case studies indicate that a suspended building having semi-rigid connections and proper suspended mass ratios can avoid local pounding failure and reduce seismic response.

자기효능 증진 기본생명소생술 프로그램의 효과 평가 -심정지 고위험 환자 가족을 대상으로 - (Evaluation of a Self-efficacy-based Basic Life Support Program for High-risk Patients' Family Caregivers)

  • 강경희;이인숙
    • 대한간호학회지
    • /
    • 제35권6호
    • /
    • pp.1081-1090
    • /
    • 2005
  • Purpose: The purpose of this study was to evaluate a Self-efficacy-based Basic Life Support (SEBLS) program for high-risk patients' family caregivers on cardiac arrest. The SEBLS program was constructed on the basis of Bandura's self-efficacy resources as well as the International Liaison Committee on Resuscitation's '2000 Guidelines for CPR and ECC'. Method: The effect of the SEBLS program on emergency response self-efficacy and emergency response behavior such as BLS(Basic Life Support) knowledge and BLS skill performance was measured by a simulated control group pretest-posttest design. Study subjects were38 high-risk patients' family caregivers(20 experimental subjects and 18 control subjects) whose family patients were admitted to a general hospital in Incheon, Korea. Result: 1. Emergency response self-efficacy was significantly higher in the experimental subjects who participated in the SEBLS program than in the control subjects. (t=8.3102, p=0.0001). 2. For emergency response behavior, BLS knowledge (t=5.6941, p=0.0001) and BLS skill performance (t=27.8281, p=0.0001) was significantly higher in experimental subjects than in control subjects. Conclusion: A SEBLS program can increase emergency response self-efficacy and emergency response behavior, and could be an effective intervention for high-risk patient's family caregivers. Long-term additional studies are needed to determine the lasting effects of the program.