• Title/Summary/Keyword: Behavior Modeling

Search Result 3,087, Processing Time 0.034 seconds

Analysis of Densification Behavior during Powder Equal Channel Angular Pressing using Critical Relative Density Model (임계상대밀도 모델을 이용한 분말 등통로각압축 공정시 분말 치밀화 거동)

  • Bok, Cheon-Hee;Yoo, Ji-Hoon;Yoon, Seung-Chae;Kim, Taek-Soo;Chun, Byong-Sun;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.365-370
    • /
    • 2008
  • In this study, bottom-up powder processing and top-down severe plastic deformation processing approaches were combined in order to achieve both full density and grain refinement with least grain growth. The numerical modeling of the powder process requires the appropriate constitutive model for densification of the powder materials. The present research investigates the effect of representative powder yield function of the Shima-Oyane model and the critical relative density model. It was found that the critical relative density model is better than the Shima-Oyane model for powder densification behavior, especially for initial stage.

Nonlinear finite element analysis of top- and seat-angle with double web-angle connections

  • Kishi, N.;Ahmed, A.;Yabuki, N.;Chen, W.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.201-214
    • /
    • 2001
  • Four finite element (FE) models are examined to find the one that best estimates moment-rotation characteristics of top- and seat-angle with double web-angle connections. To efficiently simulate the real behavior of connections, finite element analyses are performed with following considerations: 1) all components of connection (beam, column, angles and bolts) are discretized by eight-node solid elements; 2) shapes of bolt shank, head, and nut are precisely taken into account in modeling; and 3) contact surface algorithm is applied as boundary condition. To improve accuracy in predicting moment-rotation behavior of a connection, bolt pretension is introduced before the corresponding connection moment being surcharged. The experimental results are used to investigate the applicability of FE method and to check the performance of three-parameter power model by making comparison among their moment-rotation behaviors and by assessment of deformation and stress distribution patterns at the final stage of loading. This research exposes two important features: (1) the FE method has tremendous potential for connection modeling for both monotonic and cyclic loading; and (2) the power model is able to predict moment-rotation characteristics of semi-rigid connections with acceptable accuracy.

A Method for Generating a Plant Model Based on Log Data for Control Level Simulation (제어시뮬레이션을 위한 생산시스템 로그데이터 기반 플랜트 모델 생성 방법)

  • Ko, Minsuk;Cheon, Sang Uk;Park, Sang Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-27
    • /
    • 2013
  • Presented in the paper is a log data based modeling method for effective construction of a virtual plant model which can be used for the virtual PLC (Programmable Logic Controller) simulation. For the PLC simulation, the corresponding virtual plant, consisting of virtual devices, is required to interact with the input and output symbols of a PLC. In other words, the behavior of a virtual device should be the same as that of the real device. Conventionally, the DEVS (Discrete Event Systems Specifications) formalism has been used to represent the behavior a virtual device. The modeling using DEVS formalism, however, requires in-depth knowledge in the simulation area, as well as the significant amount of time and efforts. One of the key ideas of the proposed method is to generate a plant model based on the log data obtained from the production system. The proposed method is very intuitive, and it can be used to generate the full behavior model of a virtual device. The proposed approach was applied to an AGV (Automated Guided Vehicle).

Determination of plastic concrete behavior at different strain rates to determine Cowper-Symonds constant for numerical modeling

  • Nateghi, Reza;Goshtasbi, Kamran;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.227-237
    • /
    • 2020
  • Strain rate investigations are needed to calibrate strain-rate-dependent material models and numerical codes. An appropriate material model, which considers the rate effects, need to be used for proper numerical modeling. The plastic concrete cut-off wall is a special underground structure that acts as a barrier to stop or reduce the groundwater flow. These structures might be subjected to different dynamic loads, especially earthquake. Deformability of a structure subjected to dynamic loads is a principal issue which need to be undertaken during the design phase of these structures. The characterization of plastic concrete behavior under different strain rates is essential for proper designing of cut-off walls subjected to dynamic loads. The Cowper-Symonds model, as one of the most commonly applied material models, complies well with the behavior of a plastic concretes in low to moderate strain rates and will be useful in explicit dynamics simulations. This paper aims to present the results of an experimental study on mechanical responses of one of the most useful types of plastic concrete and Cowper-Symonds constant determination procedures in a wide range of strain rate from 0.0005 to 107 (1/s). For this purpose, SHPB, uniaxial, and triaxial compression tests were done on plastic concrete samples. Based on the results of quasi-static and dynamic tests, the dynamic increase factors (DIF) of this material in different strain rates and stress state conditions were determined for calibration of the Cowper - Symonds material models.

Modeling the wetting deformation behavior of rockfill dams

  • Guo, Wanli;Chen, Ge;Wu, Yingli;Wang, Junjie
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.519-528
    • /
    • 2020
  • A mathematical wetting model is usually used to predict the deformation of core wall rockfill dams induced by the wetting effect. In this paper, a series of wetting triaxial tests on a rockfill was conducted using a large-sized triaxial apparatus, and the wetting deformation behavior of the rockfill was studied. The wetting strains were found to be related to the confining pressure and shear stress levels, and two empirical equations, which are regarded as the proposed mathematical wetting model, were proposed to express these properties. The stress and deformation of a core wall rockfill dam was studied by using finite element analysis and the proposed wetting model. On the one hand, the simulations of the wetting model can estimate well the observed wetting strains of the upstream rockfill of the dam, which demonstrated that the proposed wetting model is applicable to express the wetting deformation behavior of the rockfill specimen. On the other hand, the simulated additional deformation of the dam induced by the wetting effect is thought to be reasonable according to practical engineering experience, which indicates the potential of the model in dam engineering.

Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames

  • Bazzaz, Mohammad;Kheyroddin, Ali;Kafi, Mohammad Ali;Andalib, Zahra
    • Steel and Composite Structures
    • /
    • v.12 no.5
    • /
    • pp.445-464
    • /
    • 2012
  • In order to evaluate the dynamic behavior of passive energy dissipation system, two steps need to be considered for prediction of structural response in the presence of ductile element in an off-centre bracing system. The first is a detailed analysis of the proposed ductile element and the second is the effect of this ductile element on an off-centre bracing system. The use of ductile bracing system is expanding in steel structures in order to increase the force reduction factor. Therefore, regarding the nonlinear behavior of steel material used in an off-centre bracing systems and using ductile element in OBS bracing systems, the seismic evaluation of the mentioned systems seems to be necessary. This paper aims to study linear and nonlinear behavior of steel frames with off-centre bracing system and ductile element, in order to get the best position of these bracing elements. To achieve this purpose, the modeling has been done with ANSYS software. The optimum eccentricity has been obtained by modeling three steel frames with different eccentricities and evaluating the results of them. The analytical results showed that the model OBS-C with 0.3 eccentricities has higher performance among the models.