• Title/Summary/Keyword: Before bottom dead center (BBDC)

Search Result 2, Processing Time 0.016 seconds

Case Study of Intermittent Engine Hesitation Fault Diagnosis By CKPS Fault (LPI차량에서 CKPS불량으로 주행 중 간헐적인 엔진부조 현상의 고장진단)

  • Kim, Sung Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.624-629
    • /
    • 2014
  • The purpose of this study is to carry out the task of engine hesitation which occurred intermittently in driving due to the defective CKPS of LPI vehicles. As the result of the wrong data from the equipment of D-logger, the signal error of CKPS caused the engine hesitation. We performed a study in the followings to analyze and investigate the cause effectively. First, we have investigated the control wiring harness and connector pin contact defect inspection. Second, we have inspected the defection of CKPS separately. From this study, it was found that the engine hesitation were caused by the bad durability and we have showed how to diagnosis the fault of the engine hesitation intermittently while driving. Therefore, it is determined that we have to improve the durability of the CKPS through a strict quality control and to increase the reliability.

Case Study of Intermittent Poor Acceleration Fault Diagnosis by Brake Switch Fault (브레이크 스위치 결함에 의한 간헐적인 가속불량 현상의 고장진단 사례연구)

  • Kim, Sung Mo;Jo, Haeng Deug
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2015
  • This paper investigates the failure of a car with a 2.5-liter CRDi engine of the Hyundai Company. The failure is caused by intermittent poor acceleration while driving. To analyze the cause, we investigated the air intake volume, the fuel injection, and the air-fuel ratio, which were determined to be normal. The brake switch signal error was discovered while analyzing the function that limits the output of the engine. While investigating the cause, we discovered the corrosion of the pins on the connector of the brake switch. We determined that it was generated by soapy water flowing in the solar film. Therefore, the cause of the failure was the brake switch signal errors. Additionally, we determined that ECM was the normal fail-safe mode that implemented the override device for safety during normal acceleration. Based on these results, further solar film experiments must be conducted to fully elucidate the causes.