• Title/Summary/Keyword: Bed material

Search Result 583, Processing Time 0.027 seconds

Application of Carbonized Rice Hull as Growth Medium for Vegetable Crops in Polyethylene Film House - Effect of Mixing with Gravel and of a Different Kinds and Concentrations of Nutrition Solution on the Growth of Several Vegetable Crops - (채소작물(菜蔬作物)의 시설재배용(施設栽培用) 상토재료(床土材料)로서 왕겨훈탄(燻炭)의 활용(活用)에 관(關)한 연구(硏究) - 자갈의 혼합효과(混合効果)와 영양액(營養液)의 종류(種類) 및 농도(濃度)가 채소작물(菜蔬作物)의 생장(生長)에 미치는 영향(影響) -)

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.2
    • /
    • pp.93-102
    • /
    • 1993
  • Carbonized rice hull, neutralized by dilute nitric acid, was evaluated possibility as a bed matrial for sanitary cultivation. The growth response of Chinese Cabbage, lettuce, and spinach on the carbonized rice hull supplemented with different kinds and concentrations of available nutrition solution was accessed. The ideal nitrogen concentration of nutrition solution was 126 mg/l. Both solutions of compound fertilizer and nutrition containing microelements showed no difference in growth and chemical components of vegetables. Therefore, compound fertilizer was thought to be better than nutrition owing to the convenience of handling in practice. The gravel was also evaluated as supporting material of carbonized rice hull. Because of lasting latent heat in gravel, the mixing treatment of carbonized rice hull and gravel(7~10cm in diam.) was efficient to the growth resulting in the highest dry weight per plant, but the heavy weight of gravel made the handling very difficult. Light carbonized rice hull showed the better plant growth and ease handling, compared to the mixture of soil and compost, and had enough supporting capacity. Therefore, carbonized rice hull was thought to be a desirable bed material for environmentally controlled cultivation.

  • PDF

A Study on the Chemical Index of Alteration of Igneous Rocks (화성암의 화학적 변질지수에 관한 연구)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Kim, In-Soo;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.41-54
    • /
    • 2012
  • The weathering process of rocks leads to the reduction of geotechnical bearing capacity. The weathering of granite is frequently used to refer to the degradation of geotechnical property in the design and construction of infra-structure. In this study, the range of values of CIA (chemical index of alteration) and the change of mineral compositions by weathering have been analysed with igneous rock, which covers 45.5% in South Korean territory. Several weathering indices were studied for various rocks found in Korea and significant relationships between different indices were delineated via statistical analysis. The applicability of CIA was found to be the most significant among all weathering indicies. The composition of illite, the secondary weathering residual, generally increases for the felsic rock, and swelling clay material is not included. The weathering of felsic rock will follow a sequential process, starting from bed rock, illite, and chlorite to kaoline. The mafic rock will show weathering process, from bed rock, smectite, and chlorite to kaoline. The intermediate rocks such as andesite and tuff will show similar weathering procedure and the composition of kaoline, chlorite, and smectite tends to increase more than that of illite when the mafic rock is dominated. This means the increase of rock material which has high CEC (cation exchange capacity) during secondary weathering process. However, the characteristics of a specific rock cannot be completely analyzed using merely CIA, since it is exclusively based on chemical composition and corresponding alteration. The CIA can be used to quantify the weathering process in a limited range, and further considerations such as rock composition, strength characteristics will be required to configure the comprehensive weathering impact on any specific region.

A Study on the Expansion Process of Vegetation on Sand-bars in Fluvial Meandering Stream (충적하천 사행하도에 발달한 사주에서의 식생형성 과정에 관한 연구)

  • Lee, Sam-Hee;Ock, Gi-Young;Choi, Jung-Kwon
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.658-665
    • /
    • 2008
  • One of the characteristics of fluvial river channel with sand bed-material is the existence of movable sand bars not occupied with vegetation. However, sand bars at the Hahoe's reach of the Nakdong River showing a double-meandering channel has been changed into expanding vegetation area. Moreover, sand material, in recent years, has stopped moving to downstream in channel and the number and area of bare bars which did not occupied by vegetation have been decreased. In order to find out the mechanism, we carried out the channel characteristics surveys such as hydro-geomorphologic, soil physio-chemical and vegetation surveys were conducted twice on autumn season in 2005,2006. The results so far achieved showed that the reduced discharge of transported sediment and duration of dry season might be critical factors for the spread of luxuriant vegetation. The vegetation area was significantly expanded by floods exceeding the subsequent dominant flow discharge. Furthermore, the expansion of vegetation area was highly correlated with the supply of organic matter, nutrients and alteration of soil texture by sediment deposition during the flooding event.

Engineering Geological Analysis of Landslides on Natural Slopes Induced by Rainfall - Yongin$\cdot$Ansung Area - (강우에 의해 발생된 자연사면 산사태의 지질공학적 분석 - 용인$\cdot$안성지역을 대상으로 -)

  • Kim Kyeong-Su;Kim Won-Young;Chae Byung-Gon;Song Young-Suk;Cho Yong-Chan
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.105-121
    • /
    • 2005
  • Most of the landslides triggered by intensive rainfall on natural slope occur serious damages of human beings and properties. There have been many landslides since 1991 in Gyeonggi province. The influential factors are rainfall, topography, geology and soil properties. There were 660 landslides occurred by intensive rainfall as much as 250mm at Yongin and Anseong area from Tuly 19th to luly 21st,1991 This study surveyed location, topography, geology, geometry of the landslide and rainfall at the area and analyzed occurrence characteristics of the landslides. Most of the landslides occurred on the soil layer above the bed rock. They showed changes of landslide types from translational slides at the head part to flow at the central part. The landslides have relatively small magnitude of which length is shorter than 50m. In order to identify characteristics of landslides dependent on soil conditions, geotechnical properties of soil were evaluated by laboratory tests using soil samples which were collected on slided area and not-slided area. Soil properties of the slided area show high percentage of coarse material such as gravel and sand. However, soil of the not-slided area is mainly composed of fine material such as silt and clay. Permeability coefficients of the slided area are higher than those of the not-slided area.

Synthesis of Butenes through Butanol Dehydration over Catalyst Prepared from Water Treatment Sludge (정수 슬러지로부터 제조된 촉매 상에서 부탄올 탈수반응을 통한 부텐 제조)

  • Kim, Goun;Bae, Junghyun;Choi, Hyeonhee;Lee, Choul-Ho;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.121-126
    • /
    • 2015
  • The objective of this study is to evaluate the catalytic potential of the porous material prepared from water treatment sludge. The textural properties of the catalyst were studied using $N_2$ adsorption and desorption isotherms, scanning electron microscope, and X-ray diffraction. The pellet-type catalyst prepared using water treatment sludge is determined to be a material that contains mesopores as well as micropores. The specific surface area of the catalyst is $157m^2/g$. Acidic characteristics of the catalyst are analyzed by temperature-programmed desorption of ammonia and infrared spectroscopy of adsorbed pyridine. 2-Butanol dehydration reaction was carried out in a fixed bed catalytic reactor. Yields of 1-butene, trans-2-butene, and cis-2-butene at $350^{\circ}C$ were 25.6 wt%, 19.2 wt%, and 29.9 wt%, respectively. This catalytic activity of the catalyst based on water treatment sludge in 2-butanol dehydration is due to the acid sites composed of Bronsted acid sites and Lewis acid sites. It was confirmed that the catalyst based on water treatment sludge can be utilized to produce $C_4$ olefin through butanol dehydration.

Polymeric Material Application for The Production of Ceramic Foam Catalyst

  • Sangsuriyan, Anucha;Yeetsorn, Rungsima;Tungkamani, Sabaithip;Sornchamni, Thana
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • Ceramic foams are prepared as positive images corresponding to a plastic foam structure which exhibits high porosities (85-90%). This structure makes the ceramic foams attractive as a catalyst in a dry reforming process, because it could reduce a high pressure drop problem. This problem causes low mass and heat transfers in the process. Furthermore, the reactants would shortly contact to catalyst surface, thus low conversion could occur. Therefore, this research addressed the preparation of dry reforming catalysts using a sol-gel catalyst preparation via a polymeric sponge method. The specific objectives of this work are to investigate the effects of polymer foam structure (such as porosity, pore sizes, and cell characteristics) on a catalyst performance and to observe the influences of catalyst preparation parameters to yield a replica of the original structure of polymeric foam. To accomplish these objectives industrial waste foams, polyurethane (PU) and polyvinyl alcohol (PVA) foams, were used as a polymeric template. Results indicated that the porosity of the polyurethane and polyvinyl alcohol foams were about 99% and 97%. Their average cell sizes were approximate 200 and 50 micrometres, respectively. The cell characteristics of polymer foams exhibited the character of a high permeability material that can be able to dip with ceramic slurry, which was synthesized with various viscosities, during a catalyst preparation step. Next, morphology of ceramic foams was explored using scanning electron microscopy (SEM), and catalyst properties, such as; temperature profile of catalyst reduction, metal dispersion, and surface area, were also characterized by $H_2-TPR$ and $H_2-TPD$ techniques, and BET, respectively. From the results, it was found that metal-particle dispersion was relatively high about 5.89%, whereas the surface area of ceramic foam catalysts was $64.52m^2/g$. Finally, the catalytic behaviour toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain operating conditions. The approaches from this research provide a direction for further improvement of marketable environmental friendly catalyst production.

Distribution of Pyroclastic Density Currents Determined by Numerical Model at Mt. Baekdu Volcano (백두산 화산에서 수치모형 분석에 의한 화쇄류의 영향 범위)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Kim, Sunkyeong
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.351-366
    • /
    • 2014
  • We assumed the situation where an eruption column had been formed by the explosive Plinian eruption from Mt. Baekdu and that the collapse of eruption column had caused pyroclastic density currents to occur. Based on this assumption, we simulated by using a Titan2D model. To find out about the range of the impacts of pyroclastic density currents by volcanic eruption scenarios, we studied the distance for the range of the impacts by VEIs. To compare the results by each volcanic eruption scenario, we set the location of the vent on the 8-direction flank of the outer rim and on the center of the caldera, the internal friction angle of the pyroclastic density currents as $35^{\circ}$, the bed friction angle as $16^{\circ}$. We set the pile height of column collapse and the vent diameter with various VEIs. We properly assumed the height of the column collapse, the diameter of the vent, the initial rates of the column collapse and the simulation period, based on the VEIs, gravity and the volume of the collapsed volcanic ash. According to the comparative analysis of the simulation results based on the increase of the eruption, the higher VEI by the increase of eruption products, the farther the pyroclastic density currents disperse. To the northwest from the vent on the northeast slope of the outer rim of the caldera, the impact range was 3.3 km, 4.6 km, 13.2 km, 24.0 km, 50.2 km, 83.4 km or more from VEI=2 to VEI=7, respectively. Once the database has been fully constructed, it can be used as a very important material in terms of disaster prevention and emergency management, which aim to minimize human and material damages in the vicinity of Mt. Baekdu when its eruption causes the pyroclastic density currents to occur.

A Study on the Pozzolan Reactivity and Mechanical Characteristic of Blended Portland Cements using CFBC Fly Ash (순환유동층 플라이 애시를 사용한 혼합시멘트의 포졸란 반응성과 역학적 성질에 관한 연구)

  • Park, JongTak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.207-213
    • /
    • 2018
  • Nowadays, circulating fluidized bed combustor(CFBC) boilers system that can reduce environmental pollution particles are widely used in electric power plants. But the fly ash generated from CFBC boilers has lower $SiO_2$ and higher MgO and $SO_3$ contents and also has free CaO inducing expansion and abrupt initial setting of concrete. Therefore, revised KSL5405 for CFBC fly-ash as well as pulverized coal combustion(PCC) is introduced in the concrete field. In this study, the chemical properties and mechanical properties of blended cements with PCC and CFBC fly-ash produced in Korea are analyzed. The blended cement with only CFBC fly ash shows a lower length change than OPC but a higher flow change ratio. The compressive strength of blended cement paste with PCC and CFBC fly ash is slightly greater than that of cement paste with only PCC fly-ash. Based on the results, CFBC flyash blended cement products should be used with PCC flyash to ensure the material stability and material properties.

The Fundamental Properties of Foamed Concrete as the Eco-friendly Ground Repair System for Cast in Site Using the CSA (CSA를 사용한 친환경 지반보수용 현장 기포콘크리트의 기초 특성 검토)

  • Woo, Yang-Yi;Park, Keun-Bae;Ma, Young;Song, Hun-Young
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study aimed to develop a foam concrete material for a ground repair system that has low strength and low fluidity by using an eco-friendly binder, which substitutes industrial by-products for more than 90% of cement. Basic properties were evaluated after substituting a small amount of calcium sulfo aluminate (CSA) for the binder to improve the sinking depth rate and volume change, commonly found when it had a large amount of industrial by-products. The substitution rates of CSA for the eco-friendly binder used for the foam concrete were 2.5, 5, and 10%. Fresh properties, hardened properties, pore structure, and hydrates were analyzed. Experimental results showed that using only 2.5% of CSA could improve the deep sinking depth which occurred when using an eco-friendly binder. As a result, the weight difference between the upper, middle, and lower parts of cast specimens was improved even after being hardened. The addition of CSA also contributed to the formation of small, uniformly sized closed pores and improved initial strength. However, when the proportion of CSA increased, the long-term strength decreased. However, it satisfied the target strength when 5% or less of CSA was used. The results of this study revealed that it was possible to manufacture foam concrete with low strength and high fluidity for repairing ground satisfying target qualities by adding 2.5% of CSA to the eco-friendly binder containing a large amount of industrial by-products.

Numerical Analyses on the Behavioral Characteristics of Side of Drilled Shafts in Rocks and Suggestion of Design Charts (수치해석을 통한 암반에 근입된 현장타설말뚝의 주면부 거동특성 분석 및 설계차트 제시)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.407-419
    • /
    • 2006
  • Situations where support is provided solely in shaft resistance of drilled shafts are where the base of the drilled hole cannot be cleaned so that it is uncertain that any end bearing support will be developed. Alternatively, where sound bed rock underlies low strength overburden material, it may be possible to achieve the required support in end bearing on the rock only, and assume that no support is developed in the overburden. However, where the drilled shaft is drilled some depth into sound rock, a combination of side wall resistance and end bearing can be assumed. Both theoretical and field studies of the performance of rock socketed drilled shafts show that the major portion of applied load is usually carried in side wall resistance. Normal stress at the rock-concrete interface is induced by two mechanisms. First, application of a compressive load on the top of the pile results in elastic dilation of the concrete, and second, shear displacement at the rough surface of the drilled hole results in mechanical dilation of the interface. If the stiffness of the material surrounding the socket with respect to normal displacement is constant, then the normal stress will increase with increasing applied load, and there will be a corresponding increase in the shear strength. In this study, the numerical analyses are carried out to investigate the behavioral characteristics of side of rock socketed drilled shafts. The cause of non-linear head load-settlement relationship and failure mechanism at side are also investigated properly and the design charts are suggested and verified for the leading to greater efficiency and reliability in the pile design.