• Title/Summary/Keyword: Bed depth

Search Result 447, Processing Time 0.024 seconds

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.

Mechanisms of Cold Injury and Cultural Practices for Reducing Damage of Rice (벼 냉해발성 기작과 피해 경감대책)

  • Lee, Moon-Hee;Park, Nam-Kyu;Park, Suk-Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.34-44
    • /
    • 1989
  • The stability of rice cultivation in Korea is largely depended on climatic conditions, especially, low temperature at the period of early growth stage and after heading. The improvement of cold tolerant varieties and appropriate cultural practices in rice are very effective to minimize the cold damage. This paper is summarized the mechanism and counterplans of cold injury of rice plants. The paddy area having commonly cold injury in Korea is approximately 15, 522ha in 1,709 sites on the national scale. The cold damage at seedling stage in nursery bed appeared to poor germination, leaf discoloration, dead seedlings and seedling rot ect.. At the vegetative stage, the decreased tiller number due to poor rooting and the delayed heading caused by slow growth and panicle differentiation are commonly showed. The cold injury at early reproductive stage appeared to the degeneration of spikelets and rachis - branches, while that at meiosis stage showed to increased sterility due to poor development of pollen and shortened panicle length with delaying heading, therefore the grain yield is largely decreased. The cold damage at heading and ripening stages showed to poor pollination and fertilization, low panicle exsertion, poor grain filling and finally grain quality became low. To minimize the cold injury to rice plants by low temperature, following counterplans would be recommonded ; Improvement of the cold toelrant rice varieties for the regions of midmountains and alpines. Raising healthy seedlings at upland nursery beds and by using of growth regulators such as ABA, Fuchiwang and Tachiace. Soil improvement and organic matter application to reduce cold damage by increasing water and fertilizer holding capacities in the paddy field having commonly cold water and in the place where cold damage is regularly occurred. Appropriate fertilization for raising healthy rice plants to tolerate under low temperature condition. Water management to increase water temperature in the paddy such as depth watering, round channels and polyethylene tubes around the field. Establishment of the optimum cultivation time of rice based on minimum, mean and maximum temperatures at different regions with appropriate rice varieties.

  • PDF

A Study on Effects of Air-delivery Rate upon Drying Rough Rice with Unheated Air. (벼의 자연통풍건조에 있어서 통풍량이 건조에 미치는 영향에 관한 연구)

  • 이상우;정창주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3293-3301
    • /
    • 1974
  • An experimental work was conducted by using a laboratory-made model dryer to investigate the effect of the rate of natural forced-air on the drying rate of rough rice which was deposited in the deep-bed. The dryer consisted of 8 cylinderical containers with grain holding screen at their bottoms, each of which having 30cm in diameter and 15cm in height. The containers were sacked vertically with keeping them air-tight by using paper tape during dryer operation. Two separate layers of containers were operated in the same time to have two replications. The moisture contents of grains within each bins after predetermined period of dryer operation were determined indirectly by measuring the weight of the individual containers. The air-rates were maintained at 6 levels, or 5, 8, 10, 15, 18 and 20 millimenters of static head of water. The roomair conditions during dryer operation were maintained in the range of 10-l5$^{\circ}C$ in temperature and 40-60% in relative humidity. The results of the study are summarized as follows: 1. Drying characteristics of the grains in the bottom layers were approximately the same regardless of airdelivery rates, giving the average drying rate as about 0.35 percent per hour after 40-hour drying period, during which moisture content (w. b.) reduced from 24 percent to about 10 percent. 2. After about 40-hour drying period, the mean drying rates increased from 0.163 percent per hour to 0.263 percent per hour as air-flow rates increased from 5mm to 87.16mm of static head of water. In the same time, the moisture differences of grains between lower and upper layers varied from 12.7 percent at the air rate of 5mm of water head to 7.5 percent at the air-flow rate of 20mn of water head. Thus, the greater the air-flow rate was, the more overall improvement in drying performance was. Additionally, from the result of ineffectiveness of drying grain positioned at 70cm depth or above by the air rate of 5mm of static head of water it may be suggested in practical application that the height of grain deposit would be maintained adequately within the limits of air-rates that may be actually delivered. 3. Drying after layer-turning operation was continued for about 30 hours to test the effectiveness of reducing moisture differences in the thick layers. As a result of this layer-turning operation, moisture distribution through layers approached to narrow ranges, giving the moisture range as about 7 percent at air-flow rate of 5mm head of water, about 3 percent at 10mm head about 2 percent at 15mm head, and less than 1 percent at 20mm head. In addition, from the desirable results that drying rate was rapid in the lower layers and dully in the upper layers, layer-turning operation may be very effective in natural air drying with deep-layer grain deposit, especially when the forced air was kept in low rate. 4. Even though the high rate of air delivery is very desirable for deep-layer natural-air drying of rough rice, it can be happened that the required air delivery rate could not be attained because of limitation of power source available on farms. To give a guide line for the practical application, the power required to perform the drying with the specified air rate was analyzed for different sizes of drying bin and is given in Table (5). If a farmer selects a motor of which size is 1 or {{{{1 { 1} over {2 } }}}} H.P. and air-delivery rate which ranges from 8~10mm of head, the diameter of grain bin may be suggested to choose about 2.4m, also power tiller or other moderate size of prime motor may be recommended when the diameter of grain bin is about 5.0m or more for about 120cm grain deposit.

  • PDF

Eutrophication and Freshwater Red-tide Algae on Early Impoundment Stage of Jeolgol Reservoir in the Paikryeong Island, West Sea of South Korea (백령도 절골저수지의 부영양화와 담수적조)

  • Lee, Heung-Soo;Hur, Jin;Park, Jae-Chung;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.271-283
    • /
    • 2006
  • A systematic water quality survey was conducted in August, 2005 for a drinking water supply reservoir (the Jeolgol reseuoir located in an island), which is at an early stage of impoundment, to investigate the causes of water color deterioration of the reservoir and the clogging of filter beds of a water treatment plant. The reservoir shape was simple and its average depth was 5.5 m, increasing from upreservoir toward the downreservoir end near the dam. Dissolved oxygen (DO) and chloropllyll-a (chi-a) showed a large variation while water temperature had a smaller range. Transparency ranged from 0.6 to 0.9 m (average 0.7 m). The average value of turbidity was 9.3 NTU, ranging from 8.0 ${\sim}$ 12.1 NTU. The transparency and the turbidity appear to be affected by a combination of biological and non-biological factors. The poor transparency was explained by an increase of inorganic colloids and algal bloom in the reservoir. The blockage of the filter bed was attributed to the oversupply of phytoplanktons from the reservoir. The range and the average concentration of chi-a within the reservoir were 31.6 ${\sim}$ 258.9 ${\mu}g\;L^{-1}$, 123.6 ${\mu}g\;L^{-1}$ for the upper layer, and 17.0 ${\sim}$ 37.4 ${\mu}g\;L^{-1}$, 26.5 ${\mu}g\;L^{-1}$ for the bottom layer, respectively. A predominant species contributing the algal bloom was Dinophyceae, Peridinium bipes f. occultatum. The distribution of Peridinium spp. was correlated with chi-a concentrations. The standing crop of phytoplankton was highest in the upreservoir with $8.5\;{\times}\;103\;cells\;mL^{-1}$ and it decreased toward the downresevoir. Synedra of Bacillariophyceae and Microcystis aeruginosa of Cyanophyceae appeared to contribute to the algal bloom, although they are not dominated. It is mostly likely that sloped farmlands located in the watershed of the reservoir caused water quality problems because they may contain a significant amount of the nutrients originated from fertilizers. In addition, the aerators installed in the reservoir and a shortage of the inflowing water may be related to the poor water quality. A long-term monitoring and an integrated management plan for the water quality of the watersheds and the reservoir may be required to improve the water quality of the reservoir.

Parameter Sensitivity Analysis for Spatial and Temporal Temperature Simulation in the Hapcheon Dam Reservoir (합천댐 저수지에서의 시공간적 수온모의를 위한 매개변수 민감도 분석)

  • Kim, Boram;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1181-1191
    • /
    • 2013
  • This study have implemented finding the optimal water temperature parameter set for Hapcheon dam reservoir using CE-QUAL-W2 model. In particular the sensitivity analysis was carried out for four water temperature parameters of wind sheltering coefficient (WSC), radiation heat coefficient (BETA), light extinction coefficient (EXH2O), heat exchange coefficient at the channel bed (CBHE). Firstly, WSC, BETA, EXH2O shows relatively high sensitivity in common during April to September, and CBHE does during August to November. Secondly, as a result of identifying depth range of parameter influence, BETA and EXH2O show 0~9 m and 8~14 m which is thermocline layer close to water surface, CBHE is deep layer 12 m away from bottom. Finally, applying annual or monthly optimal parameter sets indicates that the bias between two sets does not show much differences for WSC and CBHE parameters, but BETA and EXH2O parameters show $0.20^{\circ}C$ and $0.51^{\circ}C$ of monthly average biases for two parameter sets. In particular the bias reveals to be $0.4^{\circ}C$ and $1.09^{\circ}C$ during May and August that confirms the necessity of use of monthly parameters during that season. It is claimed that the current operational custom use of annual parameters in calibration of reservoir water quality model requires the improvement of using monthly parameters.

High Density Tilapia Culture in a Recirculating Water System without Filter Bed (무여과순환수 탱크 이용 Tilapia의 고밀도 사육실험)

  • KIM In-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.59-67
    • /
    • 1983
  • An experiment on the rearing of tilapia stocked in closed recirculating tanks eliminating biological filter beds was carried out at the Fish Culture Experiment Station of the National Fisheries University of Pusan, from May 18 through October 21, 1982, and the growth rates, feed conversion, water quality, spawning prevention and space utilization efficiency were discussed. Finally discussed is the feasibility on the establishment of commercial production units. On the water quality, the water temperature ranged from $22.8^{\circ}C\;to\;29.1^{\circ}C$, and total ammonia arround 10 ppm or slightly up. Maintaining phytoplankton bloom was not successful probably because of the active consumption by the heavily stocked tilapia. Several attempts were made by changing the culture water with green water from a nearby earthen pond with results of fading-away in a couple of days. Feed conversions were relatively high ranging from 0.9 to 1.2 except for experiment 1 when the fish were not fully recovered from weakened wintering state. The feed used was partly laboratory prepared $25\%$ protein diet and mostly commercially available $39\%$ protein carp feed. Spawning was completely controlled during the experiment, resulting from density effect, which ranged from 10kg to 40.7kg per square meter with water depth of 0.5 to 0.6m. Space utilization efficiency was very high. Daily net production from the experiment division 3, which showed the highest result, was 6.206 kg per tank, which is calculated 3,235 metric tons per hectare per year, This time, water temperature ranged from 27.8 to $29.1^{circ}C$, average being $28.4^{circ}C$, and total ammonia arround 10 ppm. An estimation for the commercial set-up of the production system based on the results of experiment divisions which had initial stocking rate $15\;kg/m^2$ or up, is made. If the total facility, 8 tanks comprising $56\;m^2$ in surface area, is used for the present study, the yield would become 5,639 kg from 200 day rearing, which would be possible under double sheets vinyl house without additional heating, and it is thought feasible in the economic view point, when 10 or more units are operated.

  • PDF

Surgery Alone and Surgery Plus Postoperative Radiation Therapy for Patients with pT3N0 Non-small Cell Lung Cancer Invading the Chest Wall (흉벽을 침범한 pT3N0 비소세포폐암 환자에서 수술 단독과 수술 후 방사선치료)

  • 박영제;임도훈;김관민;김진국;심영목;안용찬
    • Journal of Chest Surgery
    • /
    • v.37 no.10
    • /
    • pp.845-855
    • /
    • 2004
  • Background: No general consensus has been available regarding the necessity of postoperative radiation therapy (PORT) and its optimal techniques in the patients with chest wall invasion (pT3cw) and node negative (N0) non-small cell lung cancer (NSCLC). We did retrospective analyses on the pT3cwN0 NSCLC patients who received PORT because of presumed inadequate resection margin on surgical findings. And we compared them with the pT3cwN0 NSCLC patients who did not received PORT during the same period. Material and Method: From Aug. of 1994 till June of 2002, 22 pT3cwN0 NSCLC patients received PORT-PORT (+) group- and 16 pT3cwN0 NSCLC patients had no PORT-PORT (-) group. The radiation target volume for PORT (+) group was confined to the tumor bed plus the immediate adjacent tissue only, and no regional lymphatics were included. The prognostic factors for all patients were analyzed and survival rates, failure patterns were compared with two groups. Result: Age, tumor size, depth of chest wall invasion, postoperative mobidities were greater in PORT (-) group than PORT (+) group. In PORT (-) group, four patients who were consulted for PORT did not receive the PORT because of self refusal (3 patients) and delay in the wound repair (1 patient). For all patients, overall survival (OS), disease-free survival (DFS), loco-regional recurrence-free survival (LRFS), and distant metastases-free survival (DMFS) rates at 5 years were 35.3%, 30.3%, 80.9%, 36.3%. In univariate and multivariate analysis, only PORT significantly affect the survival. The 5 year as rates were 43.3% in the PORT (+) group and 25.0% in PORT (-) group (p=0.03). DFS, LRFS, DMFS rates were 36.9%, 84.9%, 43.1 % in PORT (+) group and 18.8%, 79.4%, 21.9% in PORT(-) group respectively. Three patients in PORT (-) group died of intercurrent disease without the evidence of recurrence. Few suffered from acute and late radiation side effects, all of which were RTOG grade 2 or lower. Conclusion: The strategy of adding PORT to surgery to improve the probability not only of local control but also of survival could be justified, considering that local control was the most important component in the successful treatment of pT3cw NSCLC patients, especially when the resection margin was not adequate. Authors were successful in the marked reduction of the incidence as well as the severity of the acute and late side effects of PORT, without taking too high risk of the regional failures by eliminating the regional lymphatics from the radiation target volume.