• Title/Summary/Keyword: Bed cultivation

Search Result 154, Processing Time 0.022 seconds

Study on Flowering, Bearing Fruit, Seed Harvesting and Seedling Transplanting Cultivation of Valeriana fauriei Briquet (쥐오줌풀 개화·결실 특성과 적정 채종방법 및 육묘이식재배에 관한 연구)

  • Ahn, Young-Sup;Hur, Mok;An, Tae-Jin;Park, Chun-Geun;Kim, Young-Guk;Park, Chung-Berm;Baek, Wan-Sook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.5
    • /
    • pp.365-371
    • /
    • 2012
  • This study was carried out to know the characteristics of flowering and bearing fruit, the optimum period, regions and methods for seed harvesting, the optimum temperatures for seed storage and germination, and the optimum period for sowing at nursery bed and seedling transplanting of Valeriana fauriei Briquet. The flowering and bearing fruit of Valeriana fauriei was developed from the before-year root. Optimum period for seed harvest of Valeriana fauriei was from late July to middle August, and optimum areas were the high elevated areas over 500 m above the sea level as Jinbu-myeon, Pyeongchang-gun, Gangwon-do. Using of net-bag for seed harvesting was the effective method to gather the full ripe seed, and bagging of net-bag was necessary from the season of middle May that was the flowering middle-stage. Germination rates don't show the difference among the different temperatures of storage as approximately 41% at $-20^{\circ}C$, $2^{\circ}C$ or $20^{\circ}C$ of seed storage temperatures. The optimum temperature range was in $15{\sim}30^{\circ}C$ for seed germination at nursery bed. The optimum period for seed sowing at nursery bed was the late February, and the optimum period for seedling transplanting was the middle April.

Optimizing Planting Distance and Labor-Saving Efficiency for Head Lettuce Using a Transplanter for Summer Season Cultivation in the Alpine Area (고랭지 결구상추의 기계정식시 적정 재식거리 및 노력절감효과)

  • Jang, Suk-Woo;Kim, Won-Bae;Kim, Jin-Young
    • Horticultural Science & Technology
    • /
    • v.18 no.6
    • /
    • pp.787-791
    • /
    • 2000
  • Lettuce seedlings used in this investigation of planting distance and labor-saving efficiency were first grown in 100-hole paper trays for 30 days. Seedling height for transplanting ranged from 3 cm to 6 cm and plants had 3 to 5 leaves. The beds prepared for transplanting were of the arched type and were 35-40 cm in width, 15-20 cm in bed height, and between-bed furrow width was 20 30 cm. Typical seedling planting depth with the transplanter was 4-5 cm, although depth was quite variable because of the irregularities of the ground. Total transplanting time with the transplanter varied from 2.6 to 2.7 hours per 10a, while it took 38.1 hours per 10a with conventional planting. It was critical that the condition of both the seedlings and the bed be adjusted to the transplanter before planting. Considering yield and inter-plant distance, optimal transplanter performance resulted with $60{\times}20cm$ or $60{\times}25cm$spacing, and the labor-saving efficiency using the transplanter was improved by over 93% of that of conventional planting by hand.

  • PDF

Development of Solid Culture Medium, Bed and Growing Environment Management System for Ginseng Sprout Based on IoT (사물인터넷 기반 새싹삼용 고형배지, 베드 및 생육환경관리시스템 개발)

  • Joo, Nakkeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1254-1262
    • /
    • 2021
  • Recently, the agricultural environment in Korea is rapidly changing due to the aging and decline of the agricultural population, and in order to solve these problems, it is urgently required to improve the agricultural productivity and reduce the labor force. To solve this problem, a smart farm fused with ICT technology is being proposed as an alternative. In Korea, smart farms are currently mainly used in greenhouses. In this paper, this smart farm technology is to be applied to the cultivation of sprouted ginseng. To this end, we use seedlings (about 1.0g) to grow a solid medium and bed for cultivating sprouted ginseng, a fresh ginseng that is produced in a short period of time (2~3 months) with a clean environment management technology that does not use chemical pesticides and hydroponics in a greenhouse developed. In addition, an IoT-based growth environment management system was developed to monitor the growth process of sprouted ginseng in such an environment and to control driving devices.

Development of Bottom Irrigation System and Management Method for Cultivation of Bonsai (분재(盆栽)의 대량재배(大量栽培)를 위한 관수(灌水)시스템과 관리방법(管理方法)의 개발(開發))

  • Lee, Ki-Eui;Jeong, Jin-Hyung
    • Journal of Forest and Environmental Science
    • /
    • v.19 no.1
    • /
    • pp.48-68
    • /
    • 2003
  • There have been some problems of high labor. low productivity in the existing systems of bonsai cultivation. This study was conducted to cultivate a large quantity of hig-quality bonsai through the development of bottom irrigation system and management method. Bonsai placed on the FRP bed were grown very well by bottom irrigation system compared with direct watering and sprinkler system. It was concluded that bottom irrigation system was possible to reduce considerable manual labor and produce mass production of high-quality bonsai within shorter periods. This research was finally found that the growth was significantly better and earlier production was certain in the vinyl house, had another advantage which could cultivate less cold-resistant species and therefore broadened a range of species selection for market supply. Cultivation techniques by the use of vinyl house and bottom irrigation system developed was quite effective for early production of bonsai as well as for high productive and value added. This project developed a new practical techniques and systems which can make mass and early production of bonsai with high quality through input of less labor. Interest in bonsai is now expanding in landscape horticulture and other fields concerned, and bonsai export of our country is also increasing. Results from this research will make a great contribution to enhancing of bonsai cultivator's competitive position in world markets and to improving of their annual income.

  • PDF

Selection of appropriate nutrient solution for simultaneous hydroponics of three leafy vegetables (Brassicaceae)

  • Young Hwi, Ahn;Seung Won, Noh;Sung Jin, Kim;Jong Seok, Park
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.643-653
    • /
    • 2022
  • This study investigated which nutrient solution is suitable for growth and secondary metabolite contents when three different vegetable plants are grown simultaneously in one hydroponic cultivation bed. Seeds of pak choi (Brassica compestris L. ssp chinsensis), red mustard (Brassica juncea L.), and arugula (Eruca sativa Mill.) were sown in the shape of a triangle in three places on rockwool cubes. The rockwool cubes were placed in semi deepflow technique (semi-DFT) hydroponic systems in a rooftop greenhouse after three weeks of growth as seedlings then cultivated with four different nutrient solutions, Korea Horticultural Experiment Station (KHE), Hoagland, Otsuka-A, and Yamazaki, at the rooftop greenhouse for two weeks. The leaf area of pak choi cultivated in Otsuka-A was the largest but SPAD values, leaf area, and fresh weight of arugula were highest with KHE treatment. The total glucosinolate (GSL) content of pak choi was 151.7% higher in KHE than in Hoagland, and there was no significant difference in Yamazaki and Otsuka-A treatments. The total GSL content of red mustard was 34.6 μmol·g-1 in Hoagland, and it was 32.6% higher in Hoagland than in Yamazaki. Total GSL content of arugula was 57.5% higher in Yamazaki and Hoagland nutrients than in KHE and Otsuka-A nutrients solutions. The total GSL content of three plants grown with KHE was 40.7% higher than with Yamazaki, and the other nutrient solutions did not show significant differences. Therefore, KHE nutrient solution is considered suitable for nutrient solution composition for the cultivation of three different Brassicaceae crops in a single hydroponic cultivation system.

SPECIES OF CULTIVATED PORPHYRA IN KOREA (한국산 양식김의 종류)

  • KANG Jae Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.77-92
    • /
    • 1970
  • Ueda, in the course of his systematic work on the lavers, Porphyra, in Japan and Korea in 1932, mentioned that most of the cultivated Porphyra belong to Porphyra tenera Kjellman. Then he, dividing the species into two forms, f. typica and f. kjellmani, put Korean cultivated Porphyra under the latter. From the 1930s to the early 1940s, Fujikawa, Kaneko and others worked on Physiological experiments or cultivational experiments of Porphyra in the culture-bed, but there was no mention about the cultivated Porphyra species. However, many fishermen generally recognize that the characteristics of cultivated Porphyra vary depending on their habitat or the picking season, and it is considered that these differences are due to the varieties of the species which are well adaptable to various environments. Recently, I have become aware of the predominant occurrence of P. yezoensis Ueda in most culture-beds of Korea as in the Tokyo Bay or other places in Japan. At present, since artificial seeding for the cultivation of Porphyra with Conchocelis has been carried out and peculiar species can be cultured, a study of the species of cultivated Porphyra has become an important subject. I collected the specimens from a number of culture-beds which are located in the legions shown in fig. 1 from January, 1968 to May, 1970 and found that there are five species, P. tenera Kjellman, P. yezoensis Ueda, P. kuniedai Kurogi, P. seriata Kjellman and P. suborbiculata Kjellman. Among them, P. kuniedai was treated as a round-type, a form of P. tenera, by Kunieda (1939) and Tanaka (1952) and the occurrence of this form is generally recognized by most fishermen. At present, as mentioned above, the most dominant species of cultivated Porphyra is P. yezoensis but the cultivation of P. tenera is restricted to certain culture-beds or the early half of the cultivation period. P. kunieda appears as a mixed species throughout most of the culture-beds, particulary in the later half of the period, while when it was picked in January it appeared dominantly in a place such as Gum-Dang where the 'Bal', splitted bamboo piece mat, was settled during the last of September. This is the first seeding process. The latter two species, P. suborbiculata and P. seriata appear frequently but in small amounts in the later half of the period particulary in the western region of the southern coast. However, it can not be ascertained when P. yezoensis becomes predominant, because specimens have not been available up until recent years but the process can be described as follows: We commonly recognize the ecological characteristics of P. tenera as follows; First, the conchospores of the species develop earlier and the period of its discharge is shorter than those of P. yezoensis; second, the microscopical buds discharge neutral spores which develop into new buds directly and buds develop repeatedly through a short period. Consequently, according to such above ecological characteristics, the species can grow thick on the 'Bal' exclusively. However, buds may disappear when they are harmed by disease such a 'infection by certain parasites or by other unusual environmental conditions. Thus P. yezoensis are enabled to grow on the 'Bal' instead of the former species since they not only develop later than the former but also macroscopical fronds discharge the neutral spore throughout the period from October to May. Likewise, if any disease appears in the culture-bed ill the later half of the period, the former is more severely damaged than the latter because the former have less resistance to the disease than the latter. Thus fewer frond survive and fewer carpospores which are the origin of the next generation can be discharged. However the latter by their nature can continue growing until early summer. In the case of the culture-bed where the above phenomenon occurs repeatedly P. yezoensis gradually may become the dominant species among cultivated Porphyra. In support of the validity of this process we find that according to the description and the plate of Wada (1941), P. tenera, P. yezoensis and P. kuniedai grow together in the culture-bed at the mouth of the Nakdong River where P. yezoensis occurs predominantly and mixed with P. kuniedai.

  • PDF

Sedimentological and Hydromechanical Characteristics of Bed Deposits for the Cultivation of Manila clam, Ruditapes philippinarum in Gomso Tidal Flat (곰소만 조간대 바지락 양식장 저질의 퇴적학적 및 수리역학적 특성)

  • CHO Tae-Chin;LEE Sang-Bae;KIM Suck-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.245-253
    • /
    • 2001
  • To investigate the effects of hydromechanical and textural characteristics of sediment deposits on the cultivation of Manila clam, Ruditapes philippinarum surface and sub-surface core sediments were collected seasonally in Gomso tidal flat. Grain size distribution were analyzed to investigate the annual variation of sediment texture. In winter unimodal distribution of grain size with the peak at $5\phi$ is dominant However, during the summer sediment texture become a little bit coarser and grain size distribution shows the peaks at $4\~5 \phi$. Optimum sediment texture for the cultivation of manila clam, R. philippinarum was found to be sandy silt in which mean Brain size was between 4 and $5 \phi$ with the sand content less than $50\%$ and clay content of $5\~10\%$. Mechanical and hydrological characteristics of sediment deposits were also studied in the laboratory and the results were applied to the numerical simulation for the behavior of surface sediment subjected to the cyclic loading from sea-water level change. Results of numerical simulation illustrate that the permeability of sediment had to be maintained in the range of $10^{-11}\sim10^{-12}m^2$ to ensure the proper sedimentological environment for the cultivation of manila clam, R. philippinarum. The deposits of virtually impermeable mud layer, with the threshold thickness of 4 cm, would be very hazardous to clam habitat.

  • PDF

Effects of Several Cooling Methods and Cool Water Hose Bed Culture on Growth and Microclimate in Summer Season Cultivation of Narrowhead Goldenray 'Ligularia stenocephaia' (곤달비 여름재배 시 냉각방법과 냉수호스베드재배가 생육 및 미기상에 미치는 영향)

  • Kim, Ki-Deog;Lee, Eung-Ho;Kim, Won-Bae;Lee, Jun-Gu;Yoo, Dong-Lim;Kwon, Young-Seok;Lee, Jong-Nam;Jang, Suk-Woo;Hong, Soon-Choon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2011
  • This study was carried out to investigate the effects of several cooling methods such as water hose cooling, mist, fog and control on growth and microclimate, and to develop a simple nutriculture bed for production of fresh leaves of narrowhead goldenaray 'Ligularia stenocephala'. When the root-zone was cooled with 240 L/hr flow rate of $13^{\circ}C$ ground water using water hose, the temperature was lowered approximately by 2 to $3^{\circ}C$ than that of control. The growth of narrowhead goldenaray were favorable in the water hose cooling compared with the other cooling methods. Nutrient culture system having part cooling effect around plant canopy was developed. The system was composed of 15 cm diameter of water hose on side wall of beds, cooling hose, and expanded rice hull media as organic substrate. When cool water which the temperature changed in the range of 14 to $22^{\circ}C$ diurnally with 240 L/hr of flow rate through water hose, the air temperature around canopy and root-zone temperature were dropped by $0.5^{\circ}C$ and $3^{\circ}C$ compared with that of conventional styrofoam bed, respectively. These results showed that newly devised bed system using water hose was simple and economical for the production of high quality narrowhead goldenaray leaves. This system might be practically used both at summer and winter season for the cultivation of narrow head goldenaray by part cooling or heating around root-zone and plant canopy.

Study on the Technological System of the Cooperative Cultivation of Paddy Rice in Korea (수도집단재배의 기술체계에 관한 연구)

  • Min-Shin Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.8 no.1
    • /
    • pp.129-177
    • /
    • 1970
  • For the purpose of establishing the systematized technical scheme of the cooperative rice cultivation which has most significant impact to improve rice productivity and the farm management, the author have studied the cultivation practices, and the variation of rice growth and yield between the cooperative rice cultivation and the individual rice cultivation at random selected 18 paddy fields. The author also have investigated through comparative method on the cultivation practices, management, organization and operation scheme of the two different rice cultivation methods at 460 paddy fields. The economic feasibility has been ana lysed and added in this report. The results obtained from this study are summarized as follows; 1. In the nursery, the average amount of fertilizer application, especially, phosphate and potassium, and the frequency of chemicals spray for the disease, insect and pest control at the cooperative rice cultivation are significantly higher than those of the individual rice cultivation. 2. The cultivation techniques of the cooperative rice farming after the transplanting can be characterized by a) the earlier transplanting of rice, b) the denser hills per unit area and the lesser number of seedlings per hill, c) the application of larger quantities of fertilizer including nitrogen, phosphate and potassium, d) more divided application of fertilizers, split doses of the nitrogen and potassium, e) the increased frequencies of the chemicals spray for the prevention of disease, insect and pest damages. 3. The rate of lodging in the cooperative rice cultivation was slightly higher than that of the individual rice cultivation, however, the losses of rice yield owing to the occurrence of rice stem borer and grass leaf roller in the cooperative rice cultivation were lower than that of the individual rice cultivation. 4. The culm length, panicle length, straw weight and grain-straw ratio are respectively higher at the cooperative rice cultivation, moreover, the higher variation of the above factors due to different localities of the paddy fields found at the individual rice cultivation. 5. The number of panicles, number of flowers per panicle and the weight of 1, 000 grains, those contributing components to the rice yield were significantly greater in the cooperative rice cultivation, however, not clear difference in the maturing rate was observed. The variation coefficient of the yield component in the cooperative cultivation showed lower than that or the individual rice cultivation. 6. The average yield of brown rice per 10 are in the cooperative rice cultivation obtained 459.0 kilograms while that of the individual rice cultivation brought 374.8 kilograms. The yield of brown rice in the cooperative rice cultivation increased 84.2 kilogram per 10 are over the individual rice cultivation. With lower variation coefficient of the brown rice yield in the cooperative rice cultivation, it can be said that uniformed higher yield could be obtained through the cooperative rice cultivation. 7. Highly significant positive correlations shown between the seeding date and the number of flowers per panicle, the chemical spray and the number of flowers per panicle, the transplanting date and the number of flowers per panicle, phosphate application and yield, potassium application and maturing rate, the split application of fertilizers and yield. Whilst the significant negative correlation was shown between the transplanting date and the maturing rate 8. The results of investigation from 480 paddy fields obtained through comparative method on the following items are identical in general with those obtained at 18 paddy fields: Application of fertilizers, chemical spray for the control of disease, insects and pests both in the nursery and the paddy field, transplanting date, transplanting density, split application of fertilizers and yield n the paddy fields. a) The number of rice varieties used in the cooperative rice cultivation were 13 varieties while the individual rice cultivation used 47 varieties. b) The cooperative rice cultivation has more successfully adopted improved cultivation techniques such as the practice of seed disinfection, adoption of recommended seeding amount, fall ploughing, application of red soil, introduction of power tillers, the rectangular-type transplanting, midsummer drainage and the periodical irrigation. 9. The following results were also obtained from the same investigation and they are: a) In the cooperative rice cultivation, the greater part of the important practices have been carried out through cooperative operation including seed disinfection, ploughing, application of red soil and compost, the control of disease, insects and pests, harvest, threshing and transportation of the products. b) The labor input to the nursery bed and water control in the cooperative rice cultivation was less than that of the individual rice cultivation while the higher rate of labor input was resulted in the red soil and compost application. 10. From the investigation on the organization and operation scheme of the cooperative rice cultivation, the following results were obtained: a) The size of cooperative rice cultivation farm was varied from. 3 ha to 7 ha and 5 ha farm. occupied 55.9 percent of the total farms. And a single cooperative farm was consisted of 10 to 20 plots of paddies. b) The educational back ground of the staff members involved in the cooperative rice cultivation was superior than that of the individual rice cultivation. c) All of the farmers who participated to the questionaires have responded that the cooperative rice cultivation could promise the increased rice yield mainly through the introduction of the improved method of fertilizer application and the effective control of diseases, insects and pests damages. And the majority of farmers were also in the opinion that preparation of the materials and labor input can be timely carried out and the labor requirement for the rice cultivation possibly be saved through the cooperative rice cultivation. d) The farmers who have expressed their wishes to continue and to make further development of the cooperative rice cultivation was 74.5 percent of total farmers participated to the questionaires. 11. From the analysis of economical feasibility on the two different methods of cultivation, the following results were obtained: a) The value of operation cost for the compost, chemical fertilizers, agricultural chemicals and labor input in the cooperative rice cultivation was respectively higher by 335 won, 199 won, 288 won and 303 won over the individual rice cultivation. However, the other production costs showed no distinct differences between the two cultivation methods. b) Although the total value of expenses for the fertilizers, agricultural chemicals, labor input and etc. in the cooperative rice cultivation were approximately doubled to the amount of the individual rice cultivation, the net income, substracted operation costs from the gross income, was obtained 24, 302 won in the cooperative rice cultivation and 20, 168 won was obtained from the individual rice cultivation. Thereby, it can be said that net income from the cooperative rice cultivation increased 4, 134 won over the individual rice cultivation. It was revealed in this study that the cooperative rice cultivation has not only contributed to increment of the farm income through higher yield but also showed as an effective means to introduce highly improved cultivation techniques to the farmers. It may also be concluded, therefore, the cooperative rice cultivation shall continuously renovate the rice production process of the farmers.

  • PDF

Analysis on Growth and Yield of Cherry Tomato Grown in a Two-Story Bed System Adapted to Strawberry Cultivation as Affected by the Planting Time during the Uncultivated Period (딸기 재배용 2단 베드 시스템에서 휴작기 이용 방울토마토 재배 시 정식 시기에 따른 생육과 생산성 분석)

  • Choi, Hyo Gil;Moon, Byoung Yong;Kang, Nam Jun;Ko, Dae Whan;Kwon, Joon Kook;Lee, Jae Han;Park, Kyoung Sub
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.228-235
    • /
    • 2016
  • This study was conducted to determine the yield of cherry tomato (Solanum lycopersicum Mill.) grown at three planting times during the uncultivated period of strawberry. Cherry tomato was planted under condition filled with strawberry dedicated culture medium on a two-story bed with April 20, April 30, and May 10 at 2015. Fruit harvest was completed on July 31. The supply concentration of nutrient solution at the time of transplanting was started as EC $1.2dS{\cdot}m^{-1}$ and it was gradually increased to EC $2.5dS{\cdot}m^{-1}$ after blooming of the first flower cluster. Netherlands PBG solution was supplied for one minute six times per day. The heights of cherry tomato plants planted at earlier were significantly greater than those of tomato plants planted later. The heights of cherry tomato plants grown at the bottom of the bed were greater than those grown in the upper bed. The yield of cherry tomatoes planted on April 20 at the bottom of the bed was greatest with an average of 2,954 g of tomatoes per plant. There were no significant differences in the average weight and sugar content of fruit according to planting times and bed position. The yield of cherry tomato plants planted on April 20 was 18% and 34% higher than that of plants planted on April 30 and May 10. We confirmed to increase the yield of the cherry tomato when early plants planted on two-story bed. These results indicate that farmers can choose the best period of producing cherry tomato during the un-cultivated period of strawberry under two-story bed conditions.