• Title/Summary/Keyword: Beat

Search Result 688, Processing Time 0.027 seconds

12.5-GHz interleaved bidirectional ultra-dense WDM transmission using the beat-frequency-locking method (Beat-frequency-locking기술을 이용한 12.5 GHz 채널간격 양방향 초고밀도 WDM 광채널 전송)

  • 이재승;김상엽;서경희
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.351-354
    • /
    • 2003
  • We present a 12.5-GHz interleaved bidirectional ultra-dense wavelength-division-multiplexing transmission over a conventional single mode fiber of 80 km achieving spectral efficiency as high as 0.8-bit/s/Hz. The beat-frequency-locking method is used to stabilize the channel frequency within $\pm$200 MHz error. To facilitate the identification of multiple beat frequency signals, we use a radio-frequency spectrum analyzer. The bidirectional transmission penalty is about 0.3 dB compared with the unidirectional transmission over the same fiber.

Quantitative Analysis on Beat Phenomenon of a Wind Farm for Intertie/Grid Faults (연계선/그리드 사고시 풍력발전단지의 맥놀이 현상에 대한 정량적 분석)

  • Kim, Hwan-Cheol;Lee, Hye-Won;Lee, Sang-Cheol;Zheng, Tai-Ying;Kang, Yong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.91-92
    • /
    • 2011
  • Beat is a phenomenon, where the magnitudes and frequencies of the voltage and the current fluctuate. This paper describes a quantitative analysis of the beat phenomenon of a wind farm using the envelope of a current during intertie/grid fault conditions. In this paper, the ratio of the crest to the trough of the envelope curve and the time interval between adjacent troughs are defined and used to evaluate the beat phenomenon quantitatively. Beat phenomena under various fault and wind conditions are analyzed. The proposed quantitative analysis seems simple but effective in the more understanding of beat phenomenon of a wind farm, and thus can be used as a basis for operation and/or protection of an intertie.

  • PDF

Automatic Detection Algorithm for Snoring and Heart beat Using a Single Piezoelectric Sensor (압전센서를 이용한 코골이와 심박 검출을 위한 자동 알고리즘)

  • Urtnasan, Erdenebayar;Park, Jong-Uk;Jeong, Pil-Soo;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.143-149
    • /
    • 2015
  • In this paper, we proposed a novel method for automatic detection for snoring and heart beat using a single piezoelectric sensor. For this study multi-rate signal processing technique was applied to detect snoring and heart beat from the single source signal. The sound event duration and intensity features were used to snore detection and heart beat was found by autocorrelation. The performance of the proposed method was evaluated on clinical database, which is the nocturnal piezoelectric snoring data of 30 patients that suffered obstructive sleep apnea. The method achieved sensitivity of 88.6%, specificity of 96.1% with accuracy of 95.6% for snoring and sensitivity of 94.1% and positive predictive value of 87.6% for heart beat, respectively. These results suggest that the proposed method can be a useful tool in sleep monitoring and sleep disordered breathing diagnosis.

Estimation of baroreflex sensitivity using pulse arrival time rather than systolic blood pressure measurement

  • Lee, Jong-Shill;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • Baroreflex sensitivity (BRS) is a parameter of the cardiovascular system that is reflected in changes in pulse interval (PD and systolic blood pressure (SBP). BRS contains information about how the autonomic nervous system regulates hemodynamic homeostasis. Normally the beat-to-beat SBP measurement and the pulse interval measured from the electrocardiogram (ECG) are required to estimate the BRS. We investigated the possibility of measuring BRS in the absence of a beat-to-beat SBP measurement device. Pulse arrival time (PAT), defined as the time between the R-peak of the ECG and a single characteristic point on the pulse wave recorded from any arterial location was measured by photoplethysmography. By comparing the BRS obtained from conventional measurements with our method during controlled breathing, we confirmed again that PAT and SBP are closely correlated, with a correlation coefficient of -0.82 to -0.95. The coherence between SBP and PI at a respiration frequency of 0.07-0.12 Hz was similar to the coherence between PAT and PI. Although the ranges and units of measurement are different (ms/mmHg vs. ms/ms) for BRS measured conventionally and by our method, the correlation is very strong. Following further investigation under various conditions, BRS can be reliably estimated without the inconvenient and expensive beat-to-beat SBP measurement.

Performance Improvement in Optical CDMA System Under The Presence of Beat Noise Using a Cancellation Method

  • Benaree, Warut;Noppanakeepong, Suthichai;Leelaruji, Nipha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1206-1210
    • /
    • 2005
  • This paper presents performance improvement in optical CDMA system under the presence of beat noise using a cancellation technique. Optical fibers and atmospheric optical communications have been proposed the connection between base stations and central station. The optical signal beat noise is due to interference between lightwave, many optical waves are simultaneously incident on each receiver photodiode. Since the photodiode acts as a square-law detector, beat noise can occur in the receiver. While A two-stage cancellation technique is analyzed and verified via simulation employed here because of its system simplicity. By using the random ingredients of all user signals are estimated, the beat noise is rebuilt and removed from the intended signal. In addition to cancellation technique cancel the inherent multiuser interference (MUI) in CDMA system and nonlinear distortion (NLD) in optical system. It is performed at the receiver of the central station where the random ingredients of all user signals are estimated and the MUI and the NLD are rebuilt and removed from the received signal. The validity of the cancellation technique is theoretically analyzed and shown by numerical results. The increasing of capacity in two stage cancellation are obtained.

  • PDF

The Modeling of the Differential Measurement of Air Pressure for Non-intrusive Sleep Monitoring Sensor System

  • Chee, Young-Joon;Park, Kwang-Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.373-381
    • /
    • 2005
  • The respiratory and heart beat signals are the fundamental physiological signals for sleep monitoring in the home. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body which makes long term measurement difficult and troublesome. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The concept of the balancing tube between two air cells is suggested to increase the robustness against postural changes during the measurement period. With this balancing tube, the meaningful frequency range could be selected by the pneumatic filter method. The mathematical model for the air mattress and balancing tube was suggested and the validation experiments were performed for step and sinusoidal input. The results show that the balancing tube can eliminate the low frequency component between two cells effectively. This technique was applied to measure the respiration and heart beat on the bed, which shows the potential applications for sleep monitoring device in home. With the analysis of the waveform, respiration intervals and heart beat intervals were calculated and compared with the signal from conventional methods. The results show that the measurement from air mattress with balancing tube can be used for monitoring respiration and heart beat in various situations.

Beat Period Tuning Method Using an Equivalent Bell Model (등가 종 모델을 이용한 맥놀이 주기 조절법)

  • Kim, Seock-Hyun;Lee, Joong-Hyeok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.561-568
    • /
    • 2012
  • This study proposes a method of an equivalent bell model in order to tune the beat period of a Korean bell. In a Korean bell having a slight asymmetry, each circumferential mode splits into a mode pair which has a slight difference in frequency, and the interaction of the mode pair makes a beat in vibration and sound. An equivalent bell model which consists of an axi-symmetric bell and an equivalent point mass, has the same mode property as in a real bell. The equivalent bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell. Using the equivalent bell model, the beat period is predicted when the bell thickness is locally decreased to improve the beat property. The predicted result is verified by experiment on a test bell. The proposed method is useful to save the time required for tuning the beat period of a large bell.

Effect of Motion-beat and Rhythm exercise on Health promoting behaviors of Obese Women Through Convergence (융복합을 활용한 모션비트와 리듬운동이 비만여성들의 건강증진행위에 미치는 영향)

  • Shin, Hye-Sun;Seo, Su-Yeun
    • Journal of Digital Convergence
    • /
    • v.15 no.6
    • /
    • pp.457-466
    • /
    • 2017
  • The present study is to observe changes of health promoting behaviors of obese women by applying 8 weeks of motion-beat on rhythm exercise program. The effects of the obese women's motion-beat in rhythm exercise were summarized in the following conclusions: For changes in their health promoting behaviors, according to the application of motion-beat to the eight-week rhythm exercise, it was noted that the application of motion-beat was effective in the factor of stress management. Therefore, since the exercise applying motion-beat maximizes fun and interest, it has been developed as a program on sports for all, appropriate and efficient for obese women, and it is expected that positive changes in health promoting behaviors can be suggested as a measure for the facilitation of their continuous participation in the exercise.

PVC Detection Based on the Distortion of QRS Complex on ECG Signal (심전도 신호에서 QRS 군의 왜곡에 기반한 PVC 검출)

  • Lee, SeungMin;Kim, Jin-Sub;Park, Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.731-739
    • /
    • 2015
  • In arrhythmia ECG signal, abnormal beat that has various abnormal shape depending on the generation site and conduction disorders is included and it is very important to diagnose heart disease such as arrhythmia. In this paper, we propose a PVC abnormal beat detection algorithm associated with ventricular disease. The PVC abnormal beat is characterized by distortion of the QRS complex occurs among the components of the ECG signal. Therefore it is possible to detect PVC abnormal beat according to the degree of distortion of the QRS complex. First, quantify the distortion of the QRS complex by using the potential of the R-peak, kurtosis and period. By using the mean and standard deviation, PVC abnormal beat is detected depending on the degree of distortion from the normal beat. The proposed algorithm can detect the average over 98% of the AAMI-V class type abnormal beat associated with ventricular disease in MIT-BIH arrhythmia database.

Acoustic Analysis of a Jing Based on Drive Point and Blow Strength (징의 타격 위치와 강도에 따른 음향 분석)

  • Cho, Sangjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.328-334
    • /
    • 2015
  • This paper describes an acoustic analysis of a Jing, Korean percussion instrument, according to different drive point and blow strength, and this analysis is focused on the softening and beat phenomena. Three kinds of blow strength (very strong, strong, and weak) and three locations of drive point (center, up, and right) are applied, and the spectrogram function built in Matlab is utilized to analyzing the softening and beat of target sounds. The stronger blow you drive to the center of the Jing, the more clearly softening is observed. Frequency shifting is increased proportionally to the blow strength and frequency and it is stand out on the harmonics in contrast with that of other partials. Beat of the Jing can be classified into the early beat and late beat. The beats by the outside driven Jing are distributed in wider frequency band than the beats by the center driven Jing. In addition, it is observed that the early beat is affected by few specific partials developed around harmonics for the center driven Jing.