• Title/Summary/Keyword: Bearing stiffness ratio & span

Search Result 15, Processing Time 0.02 seconds

An Experimental Study on the Evaluation of Shear Performance of PVA Fiber Reinforced RC Deep Beam with High Strength Headed Rebar

  • Kim, Seunghun;Lee, Kyuseon;Lee, Yongtaeg
    • Architectural research
    • /
    • v.19 no.4
    • /
    • pp.109-115
    • /
    • 2017
  • This study is done to evaluate how existence of shear-span ratio and shear reinforcing bar effects on shear performance from through shear experiment using PVA fiber reinforced ferroconcrete building. Ratio of shear-span was set 1, 1.7, and arrangement of shear reinforcing bar was set with KCI2012 regulation. In result, subject with less shear-span ratio, and shear reinforcing bar with arrangement of bar shows high stiffness. Subjects with high shear-span ratio show large difference depending on existence of shear reinforcing bar. Therefore, theoretical shear strength followed by CEB code underestimates experimental shear strength by 43.9%. Shear strength of the deep beam with headed bars is more affected by the bearing strength of head than the bond strength of bar.

Investigating the load-displacement restorative force model for steel slag self-stressing concrete-filled circular steel tubular columns

  • Feng Yu;Bo Xu;Chi Yao;Alei Dong;Yuan Fang
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.615-631
    • /
    • 2023
  • To investigate the seismic behavior of steel slag self-stressing concrete-filled circular steel tubular (SSSCFCST) columns, 14 specimens were designed, namely, 10 SSSCFCST columns and four ordinary steel slag (SS) concrete (SSC)-filled circular steel tubular (SSCFCST) columns. Comparative tests were conducted under low reversed cyclic loading considering various parameters, such as the axial compression ratio, diameter-thickness ratio, shear-span ratio, and expansion ratio of SSC. The failure process of the specimens was observed, and hysteretic and skeleton curves were obtained. Next, the influence of these parameters on the hysteretic behavior of the SSSCFCST columns was analyzed. The self stress of SS considerably increased the bearing capacity and ductility of the specimens. Results indicated that specimens with a shear-span ratio of 1.83 exhibited compression bending failure, whereas those with shear-span ratios of 0.91 or 1.37 exhibited drum-shaped cracking failure. However, shear-bond failure occurred in the nonloading direction. The stiffness of the falling section of the specimens decreased with increasing shear-span ratio. The hysteretic curves exhibited a weak pinch phenomenon, and their shapes evolved from a full shuttle shape to a bow shape during loading. The skeleton curves of the specimens were nearly complete, progressing through elastic, elastoplastic, and plastic stages. Based on the experimental study and considering the effects of the SSC expansion rate, shear-span ratio, diameter-thickness ratio, and axial compression ratio on the seismic behavior, a peak displacement coefficient of 0.91 was introduced through regression analysis. A simplified method for calculating load-displacement skeleton curves was proposed and loading and unloading rules for SSSCFCST columns were provided. The load-displacement restorative force model of the specimens was established. These findings can serve as a guide for further research and practical application of SSSCFCST columns.

Damage and stiffness research on steel shape steel fiber reinforced concrete composite beams

  • Xu, Chao;Wu, Kai;Cao, Ping zhou;Lin, Shi qi;Xu, Teng fei
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.513-525
    • /
    • 2019
  • In this work, an experimental research has been performed on Steel Fiber-Steel Reinforced Concrete (SFSRC)specimens subjected to four-point bending tests to evaluate the feasibility of mutual replacement of steel fibers and conventional reinforcement through studying failure modes, load-deflection curves, stiffness of characteristic points, stiffness degradation curves and damage analysis. The variables considered in this experiment included steel fiber volume percentage with and without conventional reinforcements (stirrups or steel fibers) with shear span depth ratios of S/D=2.5 and 3.5. Experimental results revealed that increasing the volume percentage of steel fiber decreased the creation and propagation of shear and bond cracks, just like shortening the stirrups spacing. Higher crack resistance and suturing ability of steel fiber can improve the stability of its bearing capacity. Both steel fibers and stirrups improved the stiffness and damage resistance of specimens where stirrups played an essential role and therefore, the influence of steel fibers was greatly weakened. Increasing S/D ratio also weakened the effect of steel fibers. An equation was derived to calculate the bending stiffness of SFSRC specimens, which was used to determine mid span deflection; the accuracy of the proposed equation was proved by comparing predicted and experimental results.

Design of Seismic Isolated Tall Building with High Aspect-Ratio

  • Kikuchi, Takeshi;Takeuchi, Toru;Fujimori, Satoru;Wada, Akira
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • When seismic isolation system is applied to high aspect-ratio (height/wide-ratio) steel structures, there are several problems to be taken into consideration. One is lifting up tensile force on the isolation bearing by overturning moment caused by earthquake. Another is securing building stiffness to produce seismic isolation effects. Under these conditions, this paper reports the structural design of high-rise research building in the campus of Tokyo Institute of Technology. With the stepping-up system for the corner bearings, the narrow sides of single span framework are designed to concentrate the dead load as counter-weight for the tensile reaction under earthquake. Also we adopted concrete in-filled steel column and Mega-Bracing system covering four layers on north & south framework to secure the horizontal stiffness of the building.

Research on flexural bearing capacity of cold-formed thin-walled steel and reinforced concrete sandwich composite slabs

  • Qiao, Wentao;Huang, Zhiyuan;Yan, Xiaoshuo;Wang, Dong;Meng, Lijun
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.219-230
    • /
    • 2022
  • The aim of this paper is to study the mechanical behaviors of the cold-formed thin-walled steel and reinforced concrete sandwich composite slab (CTS&RC-SCS) under vertical loads and to develop the calculation methods of its flexural bearing capacity and section stiffness. Two CTS&RC-SCS specimens were designed and manufactured to carry out the static loading test, and meanwhile, the numerical simulation analyses based on finite element method were implemented. The comparison between experimental results and numerical analysis results shows that the CTS&RC-SCS has good flexural capacity and ductility, and the accuracy and rationality of the numerical simulation analysis are verified. Further, the variable parameter analysis results indicate that neither increasing the concrete strength grade nor increasing the thickness of C-sections can significantly improve the flexural capacity of CTS&RC-SCS. With the increase of the ratio of longitudinal bars and the thickness of the composite slab, the flexural capacity of CTS&RC-SCS will be significantly increased. On the basis of experimental research and numerical analysis above, the calculation formula of the flexural capacity of CTS&RC-SCS was deduced according to the plastic section design theory, and section stiffness calculation formula was proposed according to the theory of transformed section. In terms of the ultimate flexural capacity and mid-span deflection, the calculated values based on the formulas and the experimental values are in good agreement.

Nonlinear Behaviors of Cable Spoke Wheel Roof Systems (케이블 스포크 휠 지붕 시스템의 비선형 거동)

  • Park, Kang-Geun;Lee, Mi-Hyang;Park, Mi-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics and nonlinear behaviors on the geometric nonlinear behavior of a cable spoke wheel roof system for long span lightweight roof structures. The weight of a cable spoke wheel roof dramatically can reduce and the cable roof system can easily make the required rigidity and shape by the sag ratio and pretension forces. Determining the pretension and initial sag of cable roof system is essential in a design process and the shape of roof is changed by pretension. The nonlinear behavior of flexible cable system has greatly an affect on the sag and pretension. This paper will be carried out analyzing and comparing the tensile forces and deflection of a cable spoke wheel system for the large span retractable roof, and analyzed to deflections and tensile forces by the post height of center hub. The double arrangement of a spoke wheel system with reverse curvature works more effectively as a load bearing system, the pretension can easily increase the structural stiffness. The cable truss system can carry vertical load in up and downward direction, and act effectively as load bearing elements.

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.

Study of structural parameters on the aerodynamic stability of three-tower suspension bridge

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.471-485
    • /
    • 2010
  • In comparison with the common two-tower suspension bridge, due to the lack of effective longitudinal restraint of the center tower, the three-tower suspension bridge becomes a structural system with greater flexibility, and more susceptible to the wind action. By taking a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River with two main spans of 1080 m as example, effects of structural parameters including the cable sag to span ratio, the side to main span ratio, the deck's dead load, the deck's bearing system, longitudinal structural form of the center tower and the cable system on the aerodynamic stability of the bridge are investigated numerically by 3D nonlinear aerodynamic stability analysis, the favorable structural system of three-tower suspension bridge with good wind stability is discussed. The results show that good aerodynamic stability can be obtained for three-tower suspension bridge as the cable sag to span ratio is assumed ranging from 1/10 to 1/11, the central buckle are provided between main cables and the deck at midpoint of main spans, the longitudinal bending stiffness of the center tower is strengthened, and the spatial cable system or double cable system is employed.

Parametric modeling and shape optimization of four typical Schwedler spherical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Li, L.P.;Zhang, D.L.;Xue, Y.G.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.813-833
    • /
    • 2015
  • Spherical reticulated shells are widely applied in structural engineering due to their good bearing capability and attractive appearance. Parametric modeling of spherical reticulated shells is the basis of internal analysis and optimization design. In the present study, generation methods of nodes and the corresponding connection methods of rod elements are proposed. Modeling programs are compiled by adopting the ANSYS Parametric Design Language (APDL). A shape optimization method based on the two-stage algorithm is presented, and the corresponding optimization program is compiled in FORTRAN environment. Shape optimization is carried out based on the objective function of the minimum total steel consumption and the restriction condition of strength, stiffness, slenderness ratio, stability. The shape optimization of four typical Schwedler spherical reticulated shells is calculated with the span of 30 m~80 m and rise to span ratio of 1/7~1/2. Compared with the shape optimization results, the variation rules of total steel consumption along with the span and rise to span ratio are discussed. The results show that: (1) The left and right rod-Schwedler spherical reticulated shell is the most optimized and should be preferentially adopted in structural engineering. (2) The left diagonal rod-Schwedler spherical reticulated shell is second only to left and right rod regarding the mechanical behavior and optimized results. It can be applied to medium and small-span structures. (3) Double slash rod-Schwedler spherical reticulated shell is advantageous in mechanical behavior but with the largest total weight. Thus, this type can be used in large-span structures as far as possible. (4) The mechanical performance of no latitudinal rod-Schwedler spherical reticulated shell is the worst and with the second largest weight. Thus, this spherical reticulated shell should not be adopted generally in engineering.

Study on the performance of concrete-filled steel tube beam-column joints of new types

  • Liu, Dianzhong;Li, Hongxian;Ren, Huan
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.547-563
    • /
    • 2020
  • In this paper, the influence of axial compression ratio on the mechanical properties of new type joints of side span of rectangular concrete-filled steel tubular column-H-type steel beam is studied. Two new types of side-span joints of rectangular concrete-filled steel tubular column-H-type steel beam are designed and quasi-static tests of five new type joints with 1:2 scale reduction ratios are performed. The axial compression ratio of joint JD1 is 0.3, 0.4 and 0.5, and the axial compression ratio of joint JD2 is 0.3 and 0.5. In the joint test, different axial forces were applied to the top of the column according to different axial compression ratios, and low-cyclic reciprocating load was applied on the beam. The stress and strain distribution, beam and column deformation, limit state, failure process, failure mechanism, stiffness degradation, ductile deformation and energy dissipation capacity of the joint were measured and analyzed. The results show that: with the increase of axial compression ratio, the ultimate bearing capacity of the joint decreases slightly, the plastic deformation decreases, and the stiffness and ductility decrease. According to the energy dissipation curve of the specimen, the equivalent damping coefficient also increases with the increase of axial compression ratio in a certain range, indicating that the increase of axial compression ratio can improve the seismic performance of the joint to a certain extent. The finite element method is used to simulate the joint test, and the test results are in good agreement with the simulation results.