• 제목/요약/키워드: Bearing steel

검색결과 1,019건 처리시간 0.034초

비내력벽의 손상제어를 위한 Steel Plate와 Dowel Bar 이격시스템에 대한 유한요소해석 (Finite Element Analytical Study of Steel Plate and Dowel Bar Systems Designed for Damage Reduction of Non-Bearing Walls)

  • 임창규;문교영;이홍석;김승직;김용남;이기학
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.123-130
    • /
    • 2020
  • Generally the non-bearing walls in apartment buildings in Korea are not considered as a lateral force resisting members for the design consideration. This engineering practice caused large crack damages and brittle fractures of the non-bearing walls when subjected to Pohang earthquakes in 2017 since those have not been designed for seismic loading. In this study, finite element analysis was conducted for slot type non-bearing wall connection system to reduce damages and concentrate damages to the designated damping device through separation from the structural wall members. Steel plate and dowel bar systems designed for the dissipation of seismic energies were modeled and analyzed to investigate the damage reductions. Finally, the test result and the analysis result were compared and verified.

Numerical and experimental analysis on the axial compression performance of T-shaped concrete-filled thin-walled steel

  • Xuetao Lyu;Weiwei Wang;Huan Li;Jiehong Li;Yang Yu
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.383-401
    • /
    • 2024
  • The research comprehensively studies the axial compression performance of T-shaped concrete-filled thin-walled steel tubular (CTST) long columns after fire exposure. Initially, a series of tests investigate the effects of heating time, load eccentricity, and stiffeners on the column's performance. Furthermore, Finite Element (FE) analysis is employed to establish temperature and mechanical field models for the T-shaped CTST long column with stiffeners after fire exposure, using carefully determined key parameters such as thermal parameters, constitutive relations, and contact models. In addition, a parametric analysis based on the numerical models is conducted to explore the effects of heating time, section diameter, material strength, and steel ratio on the axial compressive bearing capacity, bending bearing capacity under normal temperature, as well as residual bearing capacity after fire exposure. The results reveal that the maximum lateral deformation occurs near the middle of the span, with bending increasing as heating time and eccentricity rise. Despite a decrease in axial compressive load and bending capacity after fire exposure, the columns still exhibit desirable bearing capacity and deformability. Moreover, the obtained FE results align closely with experimental findings, validating the reliability of the developed numerical models. Additionally, this study proposes a simplified design method to calculate these mechanical property parameters, satisfying the ISO-834 standard. The relative errors between the proposed simplified formulas and FE models remain within 10%, indicating their capability to provide a theoretical reference for practical engineering applications.

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • 제9권1호
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Cu첨가 극저탄소 고 강도강의 가공성에 미치는 Al과 B의 영향 (Effect of Aluminium and Boron on Formability for Cu Bearing Extra Low Carbon Steel Sheets)

  • 김성일;정경환;홍문희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.302-305
    • /
    • 2009
  • This paper examines the effect of nitride formation on formability for Cu bearing high strength extra low carbon (ELC) steel sheets. For this purpose, we have investigated the effect of addition of aluminium (Al) and boron (B) on texture and precipitation behavior of the ELC steel during continuous annealing. Mechanical properties and microstructures of the ELC steel sheets were analyzed as well using uni-axial tensile test, electron back-scattered diffraction (EBSD) technique and transmission electron microscopy (TEM) following pilot rolling and continuous annealing. It has been found that the addition of Al and B increases the precipitation of AlN and BN. What is more, the scavange of solute nitrogen is effective in increasing the formability of the ELC steels. In addition, the Al and B addition improves the aging property of the ELC steel.

  • PDF

패널파괴형 철골 커플링 보-벽체 접합부의 내진거동 (Seismic Behavior of Steel Coupling Beam-Wall Connection with Pane Shear Failure)

  • 박완신;한민기;김선우;황선경;양일승;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.431-434
    • /
    • 2005
  • In the past decade, various experimental programmes were undertaken to address the lack of information on the interaction between steel coupling beams and reinforced concrete shear wall in a hybrid coupled shear wall system. In this paper, the seismic performance of steel coupling beam-wall connections in a hybrid coupled shear wall system is examined through results of an experimental research programme where three 2/3-scale specimens were tested under cyclic loading. The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. Panel shear strength reflects enhancement achieved through mobilization of the reinforced concrete panel using face bearing plates and/or horizontal ties in the panel region of steel coupling beam-wall connections.

  • PDF

Repair of flange damage steel-concrete composite girders using CFRP sheets

  • Wang, Lianguang;Hou, Wenyu;Han, Huafeng;Huo, Junhua
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.511-523
    • /
    • 2015
  • Damaged steel-concrete composite girders can be repaired and retrofitted by epoxy-bonded carbon fiber-reinforced polymer (CFRP) sheets to the critical areas of tension flanges. This paper presents the results of a study on the behavior of damaged steel-concrete composite girders repaired with CFRP sheets under static loading. A total of seven composite girders made of I20A steel sections and 80mm-thick by 900mm-wide concrete slabs were prepared and tested. CFRP sheets and prestressed CFRP sheets were used to repair the specimens. The specimens lost the cross-sectional area of their tension flanges with 30%, 50% and 100%. The results showed that CFRP sheets had no significant effect on the yield loads of strengthened composite girders, but had significant effect on the ultimate loads. The yield loads, elastic stiffness, and ultimate bearing capacities of strengthened composite girders had been changed as a result of prestressed CFRP sheets, the utilization ratio of CFRP sheets could be effectively improved by applying prestress to CFRP sheets. Both the yield loads and ultimate bearing capacities had been changed as a result of steel beam's flange damage level and CFRP sheets could cover the girders' shortage of bearing capacity with 30% and 50% flange damage, respectively.

무용접 장대강관말뚝 공법의 항타 및 지지력 특성 (Characteristics of Driving Efficiency and Bearing Capacity for Long Steel Pipe Pile Method without Welding)

  • 백규호
    • 한국지반공학회논문집
    • /
    • 제16권1호
    • /
    • pp.235-241
    • /
    • 2000
  • 기존의 장대강관말뚝 공법들은 말뚝의 용접이음이나 관내토의 제거 작업으로 인하여 공비와 공기가 증가하고 이들 작업이 진행되는 동안 시간효과에 의하여 말뚝의 관입 저항이 증가하여 타입이 어려워지는 등 각종 비경제적인 문제점들을 갖고 있다. 이러한 문제들을 해결하기 위하여 본 연구에서는 새로운 장대강관말뚝 공법을 제안하였으며, 제안된 공법의 시공성과 경제성을 분석하기 위하여 모형말뚝시험을 행하였다. 시험결과 새로 제안된 장대말뚝공법은 기존 공법에 비해 공기와 공비는 절감되고 지지력은 증가시키는 것으로 나타났다.

  • PDF

침질탄화처리한 고탄소 크롬 베어링강의 회전접촉 피로거동에 미치는 잔류오스테나이트의 영향 (Effect of Retained Austenite on Rolling Contact Fatigue of Nitrocarburized High-Carbon Chromium Bearing Steel)

  • 최병영;김동건;김창석;진재관
    • 열처리공학회지
    • /
    • 제9권3호
    • /
    • pp.169-176
    • /
    • 1996
  • Effect of retained austenite on rolling contact fatigue of nitrocarburized high-carbon chromium bearing steel has been investigated to develop surface-hardened bearing steel with imprved resistance to rolling contact fatigue. Fatigue tests were conducted in elesto-hydrodynamic lubricating conditions at a shaft speed of 5,000rpm, under max, hertzian stress of $492kg/mm^2$. Volume fraction of retained austenite in austenitic nitrocarburized STB2 steel was controlled by tempering at various temperature, $200{\sim}250^{\circ}C$. It was observed using TEM that decomposition of retained austenite during tempering at $250^{\circ}C$ was the highest in quantity, resulted in formation of lower bainite. Rolling contact fatigue life of the specimens with lower bainite, formed by decomposition of retained austenite, was improved in comparison with there of specimens with more amount of retained austenite.

  • PDF

Experimental investigation on shear capacity of partially prefabricated steel reinforced concrete columns

  • Yang, Yong;Chen, Yang;Zhang, Jintao;Xue, Yicong;Liu, Ruyue;Yu, Yunlong
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.73-82
    • /
    • 2018
  • This paper experimentally and analytically elucidates the shear behavior and shear bearing capacity of partially prefabricated steel reinforced concrete (PPSRC) columns and hollow partially prefabricated steel reinforced concrete (HPSRC) columns. Seven specimens including five PPSRC column specimens and two HPSRC column specimens were tested under static monotonic loading. In the test, the influences of shear span aspect ratio and difference of cast-in-place concrete strength on the shear behavior of PPSRC and HPSRC columns were investigated. Based on the test results, the failure pattern, the load-displacement behavior and the shear capacity were focused and analyzed. The test results demonstrated that all the column specimens failed in shear failure mode with high bearing capacity and good deformability. Smaller shear span aspect ratio and higher strength of inner concrete resulted in higher shear bearing capacity, with more ductile and better deformability. Furthermore, calculation formula for predicting the ultimate shear capacity of the PPSRC and HPSRC columns were proposed on the basis of the experimental results.

Comparison of Rolling Contact Fatigue Life of Bearing Steel Rollers Lubricated with Traction Oil and Mineral Oil Corresponding to ISO VG32

  • Nakajima, A.;Mawatari, T.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.291-292
    • /
    • 2002
  • Using a low viscosity synthetic traction oil and a low viscosity mineral oil with nearly equal viscosity grade of ISO VG 32, the effect of kind of oil on the fatigue life of bearing steel rollers was examined. A pair of rollers finished the contact surfaces to a mirror-like condition were driven under rolling with sliding conditions of s = -3.2% and a maximum Hertzian stress in the range of $P_H=2.8GPa{\sim}4.0GPa$ was applied in point contact condition. As a result of experiments, the fatigue life with a mineral oil was longer than that with a traction oil under higher stress conditions above $P_H=3.4GPa$. Based on the numerical calculation results of the thermal EHL which simulates the present experiment, the authors discuss the reason why such a difference in the fatigue life comes out.

  • PDF