• Title/Summary/Keyword: Bearing race

Search Result 73, Processing Time 0.026 seconds

Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I)-Vibration Analysis- (Waviness가 있는 볼베어링으로 지지된 회전계의 동특성해석 (I) -진동 해석-)

  • Jeong, Seong-Weon;Jang, Gun-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2636-2646
    • /
    • 2002
  • This research presents an analytical model to investigate vibration due to ball bearing waviness in a rotating system supported by two or more ball bearings, taking account of the centrifugal force and gyroscopic moment of the ball. The waviness of rolling elements is modeled by the sinusoidal function, and it is incorporated into the position vectors of the race curvature center. The Hertzian con tact theory is applied to calculate the elastic deflection and nonlinear contact force while the rotor has translational and angular motions. Both the centrifugal force and gyroscopic moment of the ball and the waviness of the rolling elements are included in the kinematic constraints and force equilibrium equations of a ball to derive the nonlinear governing equations of the rotor, which are solved by using the Runge-Kutta-Fehlberg algorithm to determine the new position of the rotor. The proposed model is validated by the comparison of the results of the prior researchers. This research shows that the centrifugal force and gyroscopic moment of the ball plays the important role in determining the bearing frequencies, i.e. the principal frequencies, their harmonics and the sideband frequencies resulting from the waviness of the rolling elements of ball bearing. It also shows that the bearing vibration frequencies are generated by the waviness interaction not only between the rolling elements of one ball bearing but also between those of two or more ball bearings constrained by the rotor.

Induction Motor Bearing Damage Detection Using Stator Current Monitoring (고정자전류 모니터링에 의한 유도전동기 베어링고장 검출에 관한 연구)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.36-45
    • /
    • 2005
  • This paper addresses the application of motor current spectral analysis for the detection of rolling-element bearing damage in induction machines. We set the experimental test bed. They is composed of the normal condition bearing system, the abnormal rolling-element bearing system of 2 type induction motors with shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. We have developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT(Fast Fourier Transform), Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. Especially, the analyzed results by inner product clearly illustrate that the stator signature analysis can be used to identify the presence of a bearing fault.

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports (볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성)

  • Seo, Jung Hwa;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.

Shape Design for a Inline-Skate Frame (인 라인 스케이트 프레임의 형상 설계)

  • Kim S.C.;Jee H.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • In-line skate generally consists of four major parts: boot, frame, bearing and wheel, and the most important part among those for necessary functionality is the frame. It is the most expensive, and it also makes a decisive role in practical race skating. The functional behavior of a frame is greatly affected by external dynamic forces as well as the static weight of a skater. We are proposing a new inline speed-skating frame design that has been improved in structural strength and weight for providing optimum speed in $20\sim40km$ marathon skating.

A Case Study on the Capacity Design for Manufacturing Process of Bearing-Race (베어링궤도 제조공정의 용량설계에 관한 사례연구)

  • Moon, Dug-Hee;Song, Cheng
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.349-355
    • /
    • 2002
  • In order to build a new factory, we must have answers regarding the following questions; 1. what is to be produced? 2. how are the products to be produced? 3. how much of each product will be produced? The answers are related to product-design, process-design and capacity-design respectively and they are used for layout-design as the input data. Especially capacity design decision provides the information regarding the number of equipments required and the balance of the line. This paper introduces a case study on the capacity design for a new factory where the retainers of ball bearing are manufactured. A simulation model is developed with ARENA for analyzing the system considered. The major objectives of the study are evaluating the performance of the line which is originally suggested by the company, and finding out alternatives for improving the system. Number of WIP between the processes are also investigated because it affects the space planning of the layout.

Geometric Error Analysis of Contact Type Three Points Supporting Method for Inner Diameter Measurement (접촉식 3점지지법에 의한 내경측정의 기하학적 오차 해석)

  • Kim, Min-Ho;Kim, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.69-76
    • /
    • 2008
  • Inner diameter of bearing race is automatically measured by complete inspection system after grinding process. Contact type three points supporting method is widely applied to automatic inner diameter measurement because of its excellent stability. However, the geometric consideration regarding three points supporting method is not sufficient. In this study, the error equation from geometric error analysis of three points supporting method is found. The effect of factors in the error equation is also investigated. The error equation is linear for difference of diameter in sample and master on range of tolerance. An error becomes more and more larger, when the distance of two supporting balls or the diameter of supporting ball are increased. In the result, some considerations are proposed for measurement of inner diameter by the three points supporting method.

Earwax of patients with hidradenitis suppurativa: A retrospective study

  • Shibuya, Yuka;Morioka, Daichi;Nomura, Misako;Zhang, Zhuo;Utsunomiya, Hiroki
    • Archives of Plastic Surgery
    • /
    • v.46 no.6
    • /
    • pp.566-571
    • /
    • 2019
  • Background In Western nations, hidradenitis suppurativa (HS) typically affects the apocrine gland-bearing skin of people of African origin, women, smokers, and individuals with obesity. The clinical characteristics of HS in Korea and Japan, however, are reportedly different from those in the West. We therefore hypothesized that wet earwax is associated with HS because most East Asian people are genetically predisposed to produce dry earwax. Methods The medical charts of 53 Japanese patients with HS were reviewed retrospectively. Results Unlike the results of surveys conducted in Western nations, most of our patients were men (72%), whose buttocks were the most commonly affected site. Apocrine gland-bearing areas, such as the axilla, were affected less often. The proportion of HS patients with wet earwax was 51%, which was substantially higher than that found in the general Japanese population. Moreover, when patients with gluteal HS were excluded, the proportion of patients with wet earwax became even higher (68%). Conclusions Although the etiology of HS is unknown, our survey indicated that HS in apocrine gland-bearing skin, such as the axillary and anogenital areas, may be associated with wet earwax. As this study was conducted in a limited clinical setting, a nationwide, multicenter survey is warranted to clarify the clinical characteristics of HS in Japan.

Analysis of Motor-Current Spectrum for Fault Diagnosis of Induction Motor Bearing in Desulfurization Absorber (탈황 흡수탑 유도전동기 베어링 결함 진단을 위한 전류 스펙트럼 해석)

  • Bak, Jeong-Hyeon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2015
  • According to a research that is based on a previous study, But in a different way, This study shows fault diagnosis of Induction motor bearing which runs in coal-fired power plant industries on Desulfurization absorber agitator using Spectrum analysis of Stator Current and visual inspection. As a result of harmonic content analysis of stator current spectrum, It was possible to detect ball and outer race fault frequency. The comparison in the context of this experiment proves that the amplitude of faulty frequency is increased in three times at a fault in ball and in outer race. Spectrum analysis of stator current can be used to detect the presence of a fault condition as well as experiment in faulty bearings, besides early fault detection in bearings can prevent unexpected power generation loss and emergency maintenance cost.

  • PDF

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method

  • Caesarendra, W.;Park, J.H.;Choi, B.H.;Kosasih, P.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.388-393
    • /
    • 2012
  • Vibration condition monitoring at low rotational speeds is still a challenge. Acoustic emission (AE) is the most used technique when dealing with low speed bearings. At low rotational speeds, the energy induced from surface contact between raceway and rolling elements is very weak and sometimes buried by interference frequencies. This kind of issue is difficult to solve using vibration monitoring. Therefore some researchers utilize artificial damage on inner race or outer race to simplify the case. This paper presents vibration signal analysis of low speed slewing bearings running at a low rotational speed of 15 rpm. The natural damage data from industrial practice is used. The fault frequencies of bearings are difficult to identify using a power spectrum. Therefore the relatively improved method of empirical mode decomposition (EMD), ensemble EMD (EEMD) is employed. The result is can detect the fault frequencies when the FFT fail to do it.

  • PDF