• 제목/요약/키워드: Bearing friction

검색결과 667건 처리시간 0.024초

내연기관용 무연 핀부싱의 마찰특성에 관한 실험적 연구 (Experimental Study on Friction Characteristics of Pb-free Pin Bushing for an Internal Combustion Engine)

  • 김청균;오경석
    • Tribology and Lubricants
    • /
    • 제23권6호
    • /
    • pp.306-311
    • /
    • 2007
  • This paper presents the friction characteristics of pb-fres pin bushing bearings for an automotive gasoline engine. The external load is 100 N to 600 N and the speed of the pin bushing bearing is 1000 rpm to 3000 rpm against the rubbing surfaces. And the contact modes of rubbing surfaces between a piston pin and a pb-free pin bushing specimen are a dry friction, an oil lubricated friction and a mixed friction that is starved by a lack of engine oil. Two influential factors of a contact rubbing modes and a material property are very important parameters on the tribological performance of a friction characteristic between a piston pin and a pb-free pin bushing. The experimental result shows that the pin bushing speed of 2000 rpm shows a typical oil film lubricated sliding contact mode in which means that as the applied load is increased, the friction loss is increasing. But other contact mode depending on the speed and the load may affect to the fiction coefficient without a regular and uniform trend. In summary, the oil lubricated rubbing surface definitely decreases a running-in period in short and increase oil film stiffness, and this may leads the reduction of a friction loss.

THERMAL FRICTION TORQUE CHARACTERISTICS OF STAINLESS BALL BEARINGS

  • Lee, Jae-Seon;Kim, Ji-Ho;Kim, Jong-In
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.289-290
    • /
    • 2002
  • Stainless steel ball bearings are used in the control element drive mechanism and driving mechanisms such as step motor and gear boxes for the integral nuclear reactor, SMART. The bearings operate in pressurized pure water (primary coolant) at high temperature and should be lubricated with only this water because it is impossible to supply greases or any additional lubricant since the whole nuclear rector system should be perfectly sealed and the coolant cannot contain ingredients for bearing lubrication. Temperature of water changes from room temperature to about 120 degree Celsius and pressure rises up to 15MPa in the nuclear reactor. It can be anticipated that the frictional characteristics of the ball bearings changes according to the operating conditions, however little data are available in the literature. It is found that friction coefficient of 440C stainless steel itself does not change sharply according to temperature variation from the former research, and the friction coefficient is about 0.45 at low speed range. In this research frictional characteristics of the assembled ball bearings are investigated. A special tribometer is used to simulate the axial loading and the bearing operating conditions, temperature and pressure in the driving mechanism in the nuclear reactor. Highly purified water is used as lubricant ‘ and the water is heated up to 120 degree Celsius and pressurized to 15MPa. Friction force is monitored by the torque transducer.

  • PDF

초장대말뚝의 동재하시험 해석방안 (A proposal for the analysis of the PDA testing results of the extra-long piles)

  • 이명환;홍헌성;김성회;전영석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1269-1278
    • /
    • 2006
  • These days the construction of extra-long piles increases. It is not unusual to install piles whose length exceed 45m. In such cases, the estimated value of negative skin friction becomes larger, often larger than the design load. In order to be sure of the safety of the super structure, the magnitude of the positive skin friction and the base bearing capacity should be known. In practice dynamic pile loading tests using PDA is the only possible measure to meet this requirement. However the analysis of dynamic pile loading test for such extra-long piles requires a thorough understanding of the pile-soil behaviour. In this paper, a new method to evaluate the positive skin friction and end bearing capacity from the normally performed PDA test is proposed. The proposed method was verified by performing specially designed pilot testings.

  • PDF

마찰진자를 이용한 면진장치의 원전 주 제어실 적용에 관한 연구 (A Study on the Application of Friction Pendulum System in Main Control Room of Nuclear Power Plant)

  • 김우범;이경진
    • 한국강구조학회 논문집
    • /
    • 제17권4호통권77호
    • /
    • pp.407-417
    • /
    • 2005
  • 원전 주 제어실에 마찰진자 베어링을 이용한 면진시스템을 적용하기 위한 해석 및 실험적 연구를 수행하였다. 마찰진자 베어링을 제작하였으며 동적 물성치 시험을 통하여 이의 성능을 평가하였다. 강재 격자 바닥판, 캐비넷, 4개의 마찰진자로 구성된 주제어실의 부분 면진시스템 모형을 제작하고 진동시험대 실험을 수행함으로써 마찰진자 시스템의 원전 적용성을 평가하였다. 진동대 실험에서는 원전 스펙트럼을 이용한 인공지진파를 사용하였으며 마찰진자 위치 점의 층응답 스펙트럼의 변화를 통하여 면진 성능을 평가하였다. 향후 실험을 통하여 구현하기 어려운 실험변수의 영향을 검토하기 위하여 수치해석 모형을 작성하여 실험 결과 비교 검증하였다.

Numerical Design Method for Water-Lubricated Hybrid Sliding Bearings

  • Feng, Liu;Bin, Lin;Xiaofeng, Zhang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.47-50
    • /
    • 2008
  • This paper presents a new water-lubricated hybrid sliding bearing for a high speed and high accuracy main shaft system, along with the numerical method used for its design. The porous material for the restrictor and the restriction parameter were chosen based on the special requirements of the water-lubricated bearing. Subsequent numerical calculations give the load capacity, stiffness, and friction power of different forms of water-lubricated bearings. The pressure distribution of the water film in a 6-cavity bearing is shown, based on the results of the numerical calculations. A comparison of oil-lubricated and water-lubricated bearings shows that the latter benefits more from improved processing precision and efficiency. An analysis of the stiffness and friction power results shows that 6-cavity bearings are the preferred type, due their greater stiffness and lower friction power. The average elevated temperature was calculated and found to be satisfactory. The relevant parameters of the porous restrictor were determined by calculating the restriction rate. All these results indicate that this design for a water-lubricated bearing meets specifications for high speed and high accuracy.

지오셀을 적용한 지반의 보강효과에 관한연구 (Effect Reinforced Ground using Geocell)

  • 신은철;김성환;오영인
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.782-791
    • /
    • 2009
  • This study was carried out the laboratory tests and field plate load test in order to evaluate the reinforcement effect of geocell for road construction. The geocell-reinforced subgrade shows the increment of cohesion and friction angle with comprison of non-reinforced subgrade. In addition, the field plate load test was performed on the geocell-reinforced subgrade to estimate the bearing capacity of soil. The direct shear test was conducted with utilizing a large-scale shear box to evaluate the internal soil friction angle with geocell reinforcement. The number of cells in the geocell system is varied to investigate the effect of soil reinforcement. The theoretical bearing capacity of subgrade soil with and without geocell reinforcement was estimated by using the soil internal friction angle. The field plate load tests were also conducted to estimate the bearing capacity with geocell reinforcement. It is found out that the bearing capacity of geocell-reinforced subgrade gives 2 times higher value than that of unreinforced subgrade soil. In the future, the reinforcement effect of the geocell rigidity and load-balancing effect of the geocells should be evaluated.

  • PDF

Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.589-597
    • /
    • 2018
  • Centrifuge model tests were used to simulate pile-raft composite foundation and pile-geogrid composite foundation with different pile spacing for researching the time effect of negative skin friction of rigid piles in high-speed railways. The research results show that the negative skin friction has a significant impact on the bearing capacity of composite foundation. Pile-raft composite foundation has higher bearing capacity compared to pile-geogrid composite foundation to reduce the effect of negative skin friction on piles. Both the foundation settlement and negative skin friction have significant time effect. The distribution of skin friction can be simplified as a triangle along the pile. The neutral point position moves deeper in the postconstruction stage at larger pile spacing. For pile-geogrid composite foundation, the setting of pile-cap affects the position of neutral point in the post-construction stage. Reinforced cushion with geotextile may promote the better performance of cushion for transmitting the loads to piles and surrounding soils. Arching effect in the cushion of the composite foundation is a progressive process. The compression of the rigid piles contributes less than 20% to 25% of the total settlement while the penetration of the piles and the compression of the bearing stratum below the pile tips contribute more than 70% of the total settlement. Some effective measures to reduce the settlement of soils need to be taken into consideration to improve the bearing capacity of pile foundation.

Seismic progressive collapse mitigation of buildings using cylindrical friction damper

  • Mirtaheri, Masoud;Omidi, Zobeydeh;Salkhordeh, Mojtaba;Mirzaeefard, Hamid
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.1-12
    • /
    • 2021
  • The occurrence of progressive collapse induced by the removal of the vertical load-bearing element in the structure, because of fire or earthquake, has been a significant challenge between structural engineers. Progressive collapse is defined as the complete failure or failure of a part of the structure, initiating with a local rupture in a part of the building and can threaten the stability of the structure. In the current study, the behavior of the structures equipped with a cylindrical friction damper, when the vertical load-bearing elements are eliminated, is considered in two cases: 1-The load-bearing element is removed under the gravity load, and 2-The load-bearing element is removed due to the earthquake lateral forces. In order to obtain a generalized result in the seismic case, 22 pair motions presented in FEMA p 695 are applied to the structures. The study has been conducted using the vertical push down analysis for the case (1), and the nonlinear time-history analysis for the second case using OpenSEES software for 5,10, and 15-story steel frames. Results indicate that, in the first case, the load coefficient, and accordingly the strength of the structure equipped with cylindrical friction dampers are increased considerably. Furthermore, the results from the second case demonstrate that the displacements, and consequently the forces imposed to the structure in the buildings equipped with the cylindrical friction damper substantially was reduced. An optimum slip load is defined in the friction dampers, which permits the damper to start its frictional damping from this threshold load. Therefore, the optimum slip load of the damper is calculated and discussed for both cases.

사질토 지반에서 N값과 말뚝의 길이비가 지지력 분담 특성에 미치는 영향 (Effect of N Value and Pile Length Ratio on Bearing Capacity Distribution of Cohesionless Soil)

  • 이광우;유승경;한중근;박정준;김기성;홍기권
    • 한국지반신소재학회논문집
    • /
    • 제19권1호
    • /
    • pp.65-73
    • /
    • 2020
  • 본 연구에서는 현장타설말뚝이 사질토 지반에서 지지되는 경우에 대하여, 설계지지력 산정을 위해 적용되고 있는 다양한 제안식을 이용하여 말뚝의 길이비와 N값이 지지력에 미치는 영향을 평가하였다. 그 결과, Meyerhof 제안식은 전체 지지력에 있어서 선단지지력과 주면마찰력의 분담률은 동일하게 평가하고, 지지력 분담률은 길이비에 의해서만 영향을 받는 것으로 분석되었다. NAVFAC DM-7 제안식은 말뚝의 길이가 주면마찰력과 선단지지력 모두 영향을 미치기는 하지만, 선단지지력에 더욱 큰 영향인자로 작용하는 것을 알 수 있었다. 특히, N값과 말뚝의 직경에 의한 영향보다는 말뚝 길이요소에 의한 영향이 가장 큰 것을 알 수 있었다. FHWA의 제안식은 말뚝의 지지력 산정 시, 주면마찰력에 의한 영향요소를 다른 제안식에 비해 적극적으로 반영하는 것으로 평가되었으며, 극한지지력 평가 시에 주면마찰력의 영향을 더 크게 반영하는 것을 알 수 있었다.

나노 오일을 이용한 압축기 습동부 재질의 윤활 특성 향상에 관한 연구 (Study on Improvement of Lubrication Characteristics for the Material of Compressor Friction Parts with Nano-oil)

  • 김성춘;김경민;황유진;박영도;이재근
    • 설비공학논문집
    • /
    • 제21권10호
    • /
    • pp.559-563
    • /
    • 2009
  • Performance of refrigerant oil at the thrust-bearing and at the journal-bearing of a scroll compressor is a significant factor. This paper presents the friction and anti-wear characteristics of nano oil with a mixture of a refrigerant oil and carbon nano particles. The characteristics of friction and anti-wear using nano-oil is evaluated using the disk on disk tester for measuring friction surface temperature and the coefficient of friction. The average friction coefficient of nano-oil was reduced by 60% compared to raw oil under 600 N and 1,000 rpm. It is believed that the interaction of nano particles between surfaces can be improved the lubrication in the friction surfaces. Worn surfaces of frictional specimen were also investigated by the optical and atomic force microscopy. Conclusively, it is expected that wear and friction coefficient of compressor can be reduced by alignment applying nano-oil as refrigerant oil.