• Title/Summary/Keyword: Bearing error

Search Result 286, Processing Time 0.027 seconds

Tool-Setup Measurement Technology of High Speed Precision Machining Tool (고속 정밀 가공기의 공구셋업 측정기술)

  • 박경택;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

Implementation of the Azimuth Correction Device using Astronomical Observation (천측을 이용한 방위 보정 장치의 구현)

  • Lim, Jin-Kook;Yim, Jae-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.846-854
    • /
    • 2017
  • In this paper, we proposed a method to reduce the error of compass by combining the ceiling technique used in the past with modern IT technology. We combined an encoder and the Azimuth Circle for applying an algorithm. The algorithm is able to calculate the true north by using astronomical observation. Finally, we implemented the embedded system possible to indicate various situations and perform calculations. As a result, it isn't only able to calculate the true north with an error of about $0.2^{\circ}$ but also takes less than 5 seconds. Originally, using astronomical observation requires more than 5minutes. So it is analyzed as convenient by solving the problem of taking lots of time. Especially, we present the tolerance less than $0.5^{\circ}$ by the analysis of the existing gyrocompass and the bearing standard of IMO. In conclusion, we clearly confirm that the results of this paper are possible to reduce the error of various compasses in a real world.

Target Localization Using Geometry of Detected Sensors in Distributed Sensor Network (분산센서망에서 표적을 탐지한 센서의 기하학적 구조를 이용한 표적위치 추정)

  • Ryu, Chang Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.133-140
    • /
    • 2016
  • In active sonar field, a target detection and localization based on a distributed sensor network has been much studied for the underwater surveillance of the coast. Zhou et al. proposed a target localization method utilizing the positions of target-detected sensors in distributed sensor network which consists of detection-only sensors. In contrast with a conventional method, Zhou's method dose not require to estimate the propagation model parameters of detection signal. Also it needs the lower computational complexity, and to transmit less data between network nodes. However, it has large target localization error. So it has been modified for reducing localization error by Ryu. Modified Zhou's method has better estimation performance than Zhou's method, but still relatively large estimation error. In this paper, a target localization method based on modified Zhou's method is proposed for reducing the localization error. The proposed method utilizes the geometry of the positions of target-detected sensors and a line that represents the bearing of target, a line can be found by modified Zhou's method. This paper shows that the proposed method has better target position estimation performance than Zhou's and modified Zhou's method by computer simulations.

A Study on the Allowable Bearing Capacity of Pile by Driving Formulas (각종 항타공식에 의한 말뚝의 허용지지력 연구)

  • Lee, Jean-Soo;Chang, Yong-Chai;Kim, Yong-Keol
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.106-111
    • /
    • 2002
  • The estimation of pile bearing capacity is important since the design details are determined from the result. There are numerous ways of determining the pile design load, but only few of them are chosen in the actual design. According to the recent investigation in Korea, the formulas proposed by Meyerhof based on the SPT N values are most frequently chosen in the design stage. In the study, various static and dynamic formulas have been used in predicting the allowable bearing capacity of a pile. Further, the reliability of these formulas has been verified by comparing the perdicted values with the static and dynamic load test measurements. Also, in most cases, these methods of pile bearing capacity determination do not take the time effect consideration, the actual allowable load as determined from pile load test indicates severe deviation from the design value. The principle results of this study are summarized as follows : As a result of estimate the reliability in criterion of the Davisson method, t was showed that Terzaghi & Peck >Chin>Meyerhof > Modified Meyerhof method was the most reliable method for the prediction of bearing capacity. Comparisons of the various pile-driving formulas showed that Modified Engineering News was the most reliable method. However, a significant error happened between dynamic bearing capacity equation was judged that uncertainty of hammer efficiency, characteristics of variable, time effect etc... was not considered. As a result of considering time effect increased skin friction capacity higher than end bearing capacity. It was found out that it would be possible to increase the skin friction capacity 1.99 times higher than a driving. As a result of considering 7 day's time effect, it was obtained that Engineering news, Modified Engineering News, Hiley, Danish, Gates, CAPWAP(CAse Pile Wave Analysis Program) analysis for relation, repectively, $Q_{u(Restrike)} / Q_{u(EOID)} = 0.98t_{0.1}$ , $0.98t_{0.1}$, $1.17t_{0.1}$, $0.88t_{0.1}$, $0.89t_{0.1}$, $0.97t_{0.1}$.

Evaluation of the Usefulness of the Self-developed Kw-infrared Reflective Marker in Non-coplanar Treatment (비동일면 치료 시 자체 제작한 Kw-infrared Reflective Marker의 유용성 평가)

  • Kwon, Dong-Yeol;Ahn, Jong-Ho;Park, Young-Hwan;Song, Ki-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Purpose: In radiotherapy that takes into account respiration using a RPM (Real time Position Management, Varian, USA) system, which can treat in consideration of the movement of tumor, infrared reflective markers supplied by manufacturers cannot obtain respiratory signal if the couch rotates at a certain angle or larger. In order to solve this problem, the author developed the 3D infrared reflective marker named 'Kw-marker' that can obtain respiratory signal at any angle, and evaluate its usefulness. Materials and Methods: In order to measure the stability of respiratory signal, we put the infrared reflective marker on the 3D moving phantom that can reproduce respiratory movement and acquired respiratory signal for 3 minutes under each of 3 conditions (A: $couch\;0^{\circ}$, a manufacturer's infrared reflective marker B: $couch\;0^{\circ}$, Kw-marker C: $couch\;90^{\circ}$, Kw-marker). By analyzing the respiratory signal using a breath analysis program (Labview Ver. 7.0), we obtained the peak value, valley value, standard deviation, variation value, and amplitude value. In order to examine the rotation error and moving range of the target, we placed a B.B phantom on the 3D moving phantom, and obtained images at a couch angle of $0^{\circ}$ and $90^{\circ}$ using OBI, and then acquired the X, Y and Z values (mm) of the ball bearing at the center of the B.B phantom. Results: According to the results of analyzing the respiratory signal, the standard deviation at the peak value was A: 0.002, B: 0.002 and C: 0.003, and the stability of respiration for amplitude was A: 0.15%, B: 0.14% and C:0.13%, showing that we could get respiratory signal stably by using the Kw-marker. When the couch rotated $couch\;90^{\circ}$, the mean rotation error of the ball bearing, namely, the target was X: -1.25 mm, Y: -0.45 mm and Z: +0.1 mm, which were within 1.3 mm on the average in all directions, and the difference in the moving range of the target was within 0.3 mm. Conclusion: When we obtained respiratory signal using the Kw-marker in non-coplanar treatment where the couch rotated, we could acquire respiratory signal stably and the Kw-marker was effective enough to substitute for the manufacturer's infrared reflective marker. When the rotation error and moving range of the target were measured, there was little difference, indicating that the displacement of the reflector movement in couch rotation is the cause of change in the scale and amplitude of respiratory signal. If the converted value of amplitude height according to couch angle is studied further and applied, it may be possible to perform non-coplanar phase-based gating treatment.

  • PDF

Extended Kalman Filter-based Localization with Kinematic Relationship of Underwater Structure Inspection Robots (수중 구조물 검사로봇의 기구학적 관계를 이용한 확장 칼만 필터 기반의 위치추정)

  • Heo, Young-Jin;Lee, Gi-Hyeon;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.372-378
    • /
    • 2013
  • In this paper, we research the localization problem of the crawler-type inspection robot for underwater structure which travels an outer wall of underwater structure. Since various factors of the underwater environment affect an encoder odometer, it is hard to localize robot itself using only on-board sensors. So in this research we used a depth sensor and an IMU to compensate odometer which has extreme error in the underwater environment through using Extended Kalman Filter(EKF) which is normally used in mobile robotics. To acquire valid measurements, we implemented precision sensor modeling after assuming specific situation that robot travels underwater structure. The depth sensor acquires a vertical position of robot and compensates one of the robot pose, and IMU is used to compensate a bearing. But horizontal position of robot can't be compensated by using only on-board sensors. So we proposed a localization algorithm which makes horizontal direction error bounded by using kinematics relationship. Also we implemented computer simulations and experiments in underwater environment to verify the algorithm performance.

Steady State Kalman Filter based IMM Tracking Filter for Multi-Target Tracking (다중표적 추적을 위한 정상상태 칼만필터 기반 IMM 추적필터)

  • 김병두;이자성
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.71-78
    • /
    • 2006
  • When a tracking filter may be designed in the Cartesian coordinate, the covariance of the measurement errors varies according to the range and the bearing of an interested target. In this paper, interacting multiple model based tracking filter is formulated in the Cartesian coordinate utilizing the analytic solution of the steady state Kalman filter, which can be able to consider the variation of the measurement error covariance. 100 Monte Carlo runs performed to verify the proposed method. The performance of the proposed method is compared with the conventional fixed gain and Kalman filter based IMM tracking filter in terms of the root mean square error. The simulation results show that the proposed approach meaningfully reduces the computation time and provides a similar tracking performance in comparison with the conventional Kalman filter based IMM tracking filter.

Structural Safety Assessment Using Equation Error Function and Response Error Function (방정식 오차함수와 응답 오차함수를 사용한 구조 안전성 평가)

  • Park, Woo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2819-2830
    • /
    • 2009
  • Load bearing structural members in a wide variety of applications accumulate damage over their service life. During experiment much effort and cost is needed for measuring structural safety assessment. The sparseness and errors of measured data have to be considered during the safety estimation of structures. This paper introduces parameter estimation and damage identification algorithm by a system identification using static and dynamic response. The equation error estimator and response error widely used in system identification are based on the minimization of least squared error between measured and calculated responses by a mathematical model of a structure. Since each estimator has a specific form of application in noisy environment and proposes different definitions for these forms. To study the behaviour of the estimators in noisy environment Using Monte Carlo simulation, and a data measured pertubation scheme is adopted to investigate the influence of measurement errors on identification results. The assessment result by static and dynamic response were compared, and the efficiency and applicabilities of the proposed algorithm are demonstrated through simulated static and dynamic responses of a dimensional truss type structures.

A Basic Study for Utilization of Autopilot System Using Electromagnetic Compass in a Small Fishing Boat (소형 어선에서 전자자기 컴퍼스를 이용한 항행자동시스템의 실용화에 관한 기초적 연구)

  • Jo, Hyeon-Jeong;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.54-59
    • /
    • 2004
  • Experiments were carried out to measure the variation of the compass error on ship's head up bearing by magnetic compass and electromagnetic compass on berthing at the pier in order to obtain a basic information on the utilization of autopilot system using electromagnetic compass in fishing boat. The wooden fishing boat, turned on attracting fish lamps of power consumption 85kW, steering magnetic compass and electromagnetic compass indicated westerly compass error with 7$^{\circ}$ and 13 $^{\circ}$~16$^{\circ}$ respectively. The FRP fishing boat, turned on attracting fish lamps of power consumption 130kW, electromagnetic compass indicated easterly compass error 19$^{\circ}$~23$^{\circ}$. The steel fishing boat, turned on ship's navigation equipments of power consumption 225kW, steering magnetic compass indicated westerly compass error with 16$^{\circ}$. While the difference of compass error using electromagnetic compass indicated westerly compass error with 68$^{\circ}$ on the upper deck when the navigation and fishing equipment turn on compare to turn off the equipment, it had easterly compass error with 16$^{\circ}$, 32$^{\circ}$, 20$^{\circ}$ on the forecastle deck, wheel house and compass deck respectively.

Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System (초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어)

  • Choi Young-Man;Gweon Dae-Gab;Lee Moon G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.