• Title/Summary/Keyword: Bearing damage

Search Result 407, Processing Time 0.033 seconds

Effects of Thermal Aging of Natural Rubber Bearing on Seismic Performance of Bridges (천연고무받침의 열 노화가 교량 내진성능에 미치는 영향)

  • Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.855-864
    • /
    • 2013
  • The dynamic characteristics of natural rubber bearings, which are used as isolator, are dependent on the main rubber's dynamic behaviors and nonlinear properties. Rubber materials tend to undergo an aging process under the influence of mechanical or environmental factors, so they inevitably end up facing damage. A main cause of aging like this is known to be oxidization, which occurs through the heat of reaction at high temperatures. Accordingly, in this study an accelerated thermal aging test was carried out in order to compare the characteristic values of the bearings before and after thermal aging occurs. As a result of this experiment, it was found that a thermal aging phenomenon could have some effects on shear stiffness, energy absorption, and equivalent damping coefficients of the bearings. Furthermore, a deterioration in the dynamic properties of the natural rubber bearings caused by the thermal aging was applied to an actual bridge and then the effects of such thermal aging on the seismic performance of the bridge were also compared and analyzed based on numerical analysis. As a result of this analysis, it was found that the changes in the basic properties of the natural rubber bearings caused by the thermal aging bring only a minor effect on the seismic performance of bridges.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

Influence of Aging of Lead Rubber Bearing on Seismic Performance of Bridges (납고무받침의 노화가 교량의 내진성능에 미치는 영향)

  • Park, Seong-Kyu;Oh, Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.109-116
    • /
    • 2012
  • The dynamic properties of lead rubber bearings, which are used as isolator, are dependent on the main rubber's dynamic behaviors and nonlinear qualities. Rubber materials tend to undergo an aging process under the influence of mechanical or environmental factors, so they can end up inevitably facing damage. A main cause of such aging is known to be oxidization, which occurs through the heat of reaction at high temperatures. Accordingly, in this study an accelerated thermal aging test was carried out in order to compare the characteristic values of the bearings with each other before and after thermal aging occurs. As a result of this experiment, it was found that a thermal aging phenomenon could have an effect on shear stiffness, energy absorption, and equivalent damping coefficients. Furthermore, a decline in the dynamic properties of the lead rubber bearings by means of the thermal aging process was applied to an actual bridge and the effects of such thermal aging on the seismic performance of the bridge were also compared and analyzed based on numerical analysis. As a result of this analysis, it was found that the changes in the basic properties of the lead rubber bearings have a minor effect on the seismic performance of bridges.

A Study on the Failure Characteristic of Laminated Composites Joint Containing Two Holes in Series or Parallel (복합적층판의 직병렬 유공 접합부의 파손연구)

  • Kwan-Hyung Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.93-102
    • /
    • 1995
  • A series of test was performed by measuring the failure strength and the failure mode of fiber reinforced composite laminates joint containing two holes in Series or Parallel. $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ laminate with W/d(Side distance ratio) 4.0 and E/d(Edge distance ratio) 3.0 has the full bearing strength and are preferable in case of the good efficiency in two series hole. Comparisons were made between testing results and predicting values of the FEM model. Good agreements were fecund between them except the case of $E/d=2{\sim}3$. In the case of $G_h{\geq}3.0d$ and $G_v{\geq}3.0d$ since the interaction coefficients between two parallel holes and between two series holes were small, holes can be treated as independent. The Acoustic Emission(AE) and SEM method were utilized to find out the initial defects, damage and the fracture mechanism.

  • PDF

Seismic Responses of Highway Multiple Span Steel Bridges Retrofitted by Protective Devices (저감장치에 의해 개선된 고속도로 다경간 강교량의 지진응답)

  • Choi, Eun-Soo;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.49-59
    • /
    • 2004
  • A previous study evaluated the seismic response of typical multi-span simply supported (MSSS) and multi-span continuous (MSC) steel-girder bridges in the central and southeastern United States. The results showed that the bridges were vulnerable to damage resulting from impact between decks, and large ductility demands on nonductile columns. Furthermore, fixed and expansion bearings were likely to fail during strong ground motion. In this paper, several retrofit measures to improve the seismic performance of typical multi-span simply supported and multi-span continuous steel girder bridges are evaluated, including the use of elastomeric bearings, lead-rubber bearings, and restrainer cables. It is determined that iead-rubber bearings are the most effective retrofit measure for reducing the seismic vulnerability of typical bridges. While isolation provided by elastomeric bearings limits the forces into the columns, the added flexibility results in pounding between decks in the MSSS steel-girder bridge. Restrainer cables, which are becoming a common retrofit measure, are only moderately effective in reducing the seismic vulnerability of MSSS and MSC steel girder bridges.

  • PDF

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.

Evaluation of Seismic Response Considering the Ageing Effect of Rubber and Lead-Rubber Bearings Applied to PSC Box Bridge (PSC-Box 교량에 적용된 탄성고무 받침과 납-고무 받침의 노후화 효과를 고려한 지진응답의 평가)

  • Jeong, Yeon Hui;Song, Jong-Keol;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.311-319
    • /
    • 2019
  • The number of aged bridges is increasing so that bridges over 30 years old account for about 11% of all bridges. Consequently, the development of a seismic performance evaluation method that considers the effects of ageing is essential for a seismic retrofitting process for improvement of the seismic safety of existing old bridges. Assessment of the damage situation of bridges after the recent earthquakes in Korea has been limited to the bearings, anchor, and concrete mortar on piers. The purpose of this study is to evaluate the seismic responses of PSC box girder bridges by considering the ageing effect of rubber bearings (RBs) and lead-rubber bearings (LRBs). The modification factor proposed by AASHTO is used to take into account the ageing effect in the bearings. PSC box girder bridges with RBs and LRBs were 3D modeled and analyzed with the OpenSEES program. In order to evaluate the ageing effect of RBs and LRBs, 40 near fault and 40 far field records were used as the input earthquakes. When considering the effect of ageing, the displacement responses and shear forces of bridge bearings (RBs and LRBs) were found to increase mostly under the analytical conditions. It was shown that the effect of ageing is greater in the case of RBs than in the case of LRBs.

Dynamic Characteristic of the Seismic Performance of Uninterruptible Power Supply with Combined Isolator Using Shaking Table Test (복합면진장치를 적용한 무정전전원장치의 1축 진동대실험 기반 동적특성 분석)

  • Lee, Ji-Eon;Lee, Seung-Jae;Park, Won-Il;Choi, Kyoung-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.19-28
    • /
    • 2022
  • In this study, three types of combined isolator consisting of High Damping Rubber Bearing (HDRB) and wire isolator were developed for Uninterruptible Power Supply system (UPS). The dynamic characteristics of the combined isolator were investigated through one-axis shaking table test. The input acceleration were generated in accordance with ICC-ES AC156 code. Scale factors of the input acceleration were designed to be 0.5-2 times the required response spectrum defined in ICC-ES AC156. Based on the test results, damage and dynamic characteristics of the UPS were investigated: including natural frequency, damping ratio, acceleration time history response, dynamic amplification factor and relative displacement. Based on that, it was found that the combined isolator developed in this study could improve the seismic behavior of the UPS, in particular, the response acceleration.

Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs

  • Yuan, Xin;Bai, Hongyu;Sun, Chen;Li, Qinqing;Song, Yanfeng
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.375-391
    • /
    • 2022
  • This paper discussed and analyzed the interfacial stress distribution characteristic of adjacent cracks in Carbon Fiber Reinforced Polymer (CFRP) plate strengthened concrete slabs. One un-strengthened concrete test beam and four CFRP plate-strengthened concrete test beams were designed to carry out four-point flexural tests. The test data shows that the interfacial shear stress between the interface of CFRP plate and concrete can effectively reduce the crack shrinkage of the tensile concrete and reduces the width of crack. The maximum main crack flexural height in pure bending section of the strengthened specimen is smaller than that of the un-strengthened specimen, the CFRP plate improves the rigidity of specimens without brittle failure. The average ultimate bearing capacity of the CFRP-strengthened specimens was increased by 64.3% compared to that without CFRP-strengthen. This indicites that CFRP enhancement measures can effectively improve the ultimate bearing capacity and delay the occurrence of debonding damage. Based on the derivation of mechanical analysis model, the calculation formula of interfacial shear stress between adjacent cracks is proposed. The distributions characteristics of interfacial shear stress between certain crack widths were given. In the intermediate cracking region of pure bending sections, the length of the interfacial softening near the mid-span cracking position gradually increases as the load increases. The CFRP-concrete interface debonding capacity with the larger adjacent crack spacing is lower than that with the smaller adjacent crack spacing. The theoretical calculation results of interfacial bonding shear stress between adjacent cracks have good agreement with the experimental results. The interfacial debonding failure between adjacent cracks in the intermediate cracking region was mainly caused by the root of the main crack. The larger the spacing between adjacent cracks exists, the easier the interfacial debonding failure occurs.

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.