• 제목/요약/키워드: Bearing arrangement

검색결과 81건 처리시간 0.02초

디스플레이용 판유리 이송을 위한 양방향 이송 로봇장치 (Full Duplex Robot System for Transferring Flat Panel Display Glass)

  • 이동훈;김성동;이치범;조영학
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.996-1002
    • /
    • 2013
  • This study addresses the development of a full duplex robotic system for transferring flat-panel display glass. We propose to accomplish this using a bidirectional linear transfer mechanism in place of the conventional rotary transfer mechanism. The developed full duplex robot comprises a driving part that carries the glass panel laterally, vertical part that can be moved up and down by means of a ball screw and linear motion guide arrangement, and hand part that slides by the cylinder of the driving part along the guide rail with a V-guide bearing attached to the bottom of the support. In addition, an alignment part prevents the hand part from derailing and holds the hand part while the driving part moves horizontally. The full duplex robot lifts and drives a glass panel directly while transferring it to the buffer and does not require rotational motion. Therefore, both transferring and stacking are realized with a single device. This device can be used in existing industrial facilities as an alternative to existing industrial robots in current as well as future process lines. The proposed full duplex robot is expected to save considerable amounts of time and space, and increase product throughput.

A study about determination of preliminary design & minimum reinforcement ratios

  • KOC, Varol;EMIROGLU, Yusuf
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.673-692
    • /
    • 2016
  • In the standards, minimum reinforcement ratios are presented as the least reinforcement ratios that bearing elements should have in a way to include all systems and in general. However, naturally these general minimum ratios might be presented as being lower than the normally required reinforcement ratios by criteria such as system size, bearing system arrangement, section situation and distributions of the elements and earthquake effect. In this case, minimum reinforcement ratios may remain as meaningless restrictions. Then grouping the criterion that might affect reinforcement ratios according to certain parameters and creating minimum reinforcement ratios regarding preliminary design will provide ease and safety during the project designing. Moreover, it will enable fast and simple examinations in the beginning of project control and evaluation process. By means of the data which could be defined as "preliminary design & minimum reinforcement ratios", a more realistic and safe restriction compared to general minimum reinforcement ratios could be presented. As a result of numerous comprehensive studies, reinforcement ratios to include all certain systems might be obtained. Today, thanks to the development level of finite elements programs which can make reinforced concrete modelling, with the studies that are impossible to carry out beforehand, this deficiency in the minimum reinforcement ratios in the standarts may at least be partially made up with the advisory regulation of preliminary design & minimum reinforcement ratios. As the structure of the system to be examined and the diversity of the parameters range from the specific to the general, preliminary design & minimum reinforcement ratios will approximate to general minimum reinforcement ratios in real terms. By focusing on a more specific system structure and diversity of the parameters, preliminary design and even design reinforcement ratios will be approximated. In this preliminary study, a route between these two extremes was attempted to be followed. Today, it is possible to determine suggested practical ratios for project designs through carrying out numerous studies.

Design and analysis of slotted shear walls equipped with energy dissipating shear connectors

  • Shen, Shaodong;Nie, Xin;Pan, Peng;Wang, Haishen
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.539-544
    • /
    • 2017
  • Shear walls have high stiffness and strength; however, they lack energy dissipation and repairability. In this study, an innovative slotted shear wall featuring vertical slots and steel energy dissipation connectors was developed. The ductility and energy dissipation of the shear wall were improved, while sufficient bearing capacity and structural stiffness were retained. Furthermore, the slotted shear wall does not support vertical forces, and thus it does not have to be arranged continuously along the height of the structure, leading to a much free arrangement of the shear wall. A frame-slotted shear wall structure that combines the conventional frame structure and the innovative shear wall was developed. To investigate the ductility and hysteretic behavior of the slotted shear wall, finite element models of two walls with different steel connectors were built, and pushover and quasi-static analyses were conducted. Numerical analysis results indicated that the deformability and energy dissipation were guaranteed only if the steel connectors yielded before plastic hinges in the wall limbs were formed. Finally, a modified D-value method was proposed to estimate the bearing capacity and stiffness of the slotted shear wall. In this method, the wall limbs are analogous to columns and the connectors are analogous to beams. Results obtained from the modified D-value method were compared with those obtained from the finite element analysis. It was found that the internal force and stiffness estimated with the modified D-value method agreed well with those obtained from the finite element analysis.

수치해석을 통한 콘크리트궤도 침하감소 목적의 말뚝기초 설치효과 평가 (Numerical Evaluation of Pile Installation Effects as Settlement Reducers for Concrete Tracks)

  • 이수형
    • 한국지반공학회논문집
    • /
    • 제21권10호
    • /
    • pp.73-83
    • /
    • 2005
  • 최근 사용이 증대되고 있는 말뚝지지 전면기초(piled raft foundation) 개념의 기초 설계에서는 지지력을 증대시키기 위한 목적 보다는 주로 침하를 감소시킬 목적으로 말뚝이 사용된다. 콘크리트궤도가 연약한 지반에 설치되는 경우에는 일반적으로 지지력 측면에서의 문제는 없으나, 과도한 침하가 발생할 수 있다. 이 경우 소수의 소구경 말뚝을 궤도하부에 적절히 배치하여 설치하면 침하를 효과적으로 감소시킬 수 있을 것으로 예측된다. 본 논문에서는 말뚝 설치로 인한 콘크리트궤도의 침하감소 효과를 수치해석을 통해 평가하였다. 3차원 유한차분해석법을 이용하여 말뚝이 설치된 콘크리트궤도를 모델링 하였으며, 지반 강성과 말뚝 배치의 변화에 따른 침하량 감소 효과의 차이를 분석하였다. 해석 결과로 부터 말뚝설치를 통해 콘크리트궤도의 침하를 효과적으로 감소시킬 수 있는 것을 확인하였으며, 경제적인 설계를 위한 지반조건에 따른 합리적인 말뚝 열수와 간격을 제시하였다. 또한, 지반 조건과 말뚝 배치의 변화에 따른 말뚝의 하중분담 특성을 분석함으로써, 콘크리트궤도 하부에 설치된 말뚝의 지지 메커니즘을 파악하였다.

개폐식 방사형 케이블 지붕 시스템의 역학적 특성 (Mechanical Characteristics of Retractable Radial Cable Roof Systems)

  • 박강근;이동우;최동일
    • 한국공간구조학회논문집
    • /
    • 제17권2호
    • /
    • pp.21-32
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics on the geometric nonlinear behavior of radial cable roof systems for long span retractable cable roof structures. The retractable roof is designed as a full control system to overcome extreme outdoor environments such as extreme hot or cold weather, strong wind or sunlight, and the cable roof greatly can reduce roof weight compared to other rigid structural system. A retractable cable roof system is a type of structures in which the part of entire roof can be opened and closed. The radial cable roof is an effective structural system for large span retractable roofs, the outer perimeter of the roof is a fixed membrane roof and the middle part is a roof that can be opened and closed. The double arrangement cables of a radial cable truss roof system with reverse curvature works more effectively as a load bearing cables, the cable system can carry vertical load in up and downward direction. In this paper, to analyze the mechanical characteristics of a radial cable roof system with central posts, the authors will investigate the tensile forces of bearing cables, stabilized cables, ring cables, and the deflection of roof according to the height of the post or hub that affects the sag ratio of cable truss. The tensile forces of the cables and the deflection of the roof are compared for the cases when the retractable roof is closed and opened.

Anti-seismic behavior of composite precast utility tunnels based on pseudo-static tests

  • Yang, Yanmin;Tian, Xinru;Liu, Quanhai;Zhi, Jiabo;Wang, Bo
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.233-244
    • /
    • 2019
  • In this work, we have studied the effects of different soil thicknesses, haunch heights, reinforcement forms and construction technologies on the seismic performance of a composite precast fabricated utility tunnel by pseudo-static tests. Five concrete specimens were designed and fabricated for low-cycle reciprocating load tests. The hysteretic behavior of composite precast fabricated utility tunnel under simulated seismic waves and the strain law of steel bars were analyzed. Test results showed that composite precast fabricated utility tunnel met the requirements of current codes and had good anti-seismic performance. The use of a closed integral arrangement of steel bars inside utility tunnel structure as well as diagonal reinforcement bars at its haunches improved the integrity of the whole structure and increased the bearing capacity of the structure by about 1.5%. Increasing the thickness of covering soil within a certain range was beneficial to the earthquake resistance of the structure, and the energy consumption was increased by 10%. Increasing haunch height within a certain range increased the bearing capacity of the structure by up to about 19% and energy consumption by up to 30%. The specimen with the lowest haunch height showed strong structural deformation with ductility coefficient of 4.93. It was found that the interfaces of haunches, post-casting self-compacting concrete, and prefabricated parts were the weak points of utility tunnel structures. Combining the failure phenomena of test structures with their related codes, we proposed improvement measures for construction technology, which could provide a reference for the construction and design of practical projects.

링팩내의 피스톤링 윤활에 관한 연구 (Development of Piston Ring Lubrication for the Ring Pack Arrangement)

  • 심현해;권오관
    • Tribology and Lubricants
    • /
    • 제1권1호
    • /
    • pp.46-58
    • /
    • 1985
  • 피스톤링과 실린더벽 사이의 윤활이 왕복운동을 하며 동하중을 받는 포물선형의 슬라이드 베어링의 유체 윤활로 보고 전개하였다. 싸이클 상의 유막 두께의 변화, 윤활유 운반과 마찰력을 계산하는 과정이 개략적으로 설명되었고, 이들 성능 특성들에 대한 링 높이, 링 앞면 곡률반경과 링의 비대칭의 영향을 고찰하였다. 단독링에 대한 해석결과를 조금 더 복잡한 링 팩에 대해 확대 적용하였다. 링의 부하가 되는 링 주위의 압력들은 실험적으로 또는 가스 흐름 해석으로부터 얻을 수 있는데 본 연구에서는 후자를 택하였다. 링팩에서의 유체 연속 및 윤활유 부족에 따른 수치 해석에 주안점을 두었다.

경부고속철도 제6-2공구 노반신설 공사 중 치환공법을 통한 연약지반 처리연구 (A study on soft soil improvement method of Seoul-Busan high-speed railway 6-2nd construction)

  • 정재민;임창빈;최상헌;이광재
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1764-1773
    • /
    • 2011
  • This study is about how to handle very soft grounds consisted of coal and household garbage(organic soil), clay, silt and so on, through examining Seoul-Busan High-Speed railway 6-2nd section. The soft soil might induce long term settlement and lead to structure's differential settlement eventually. So, we performed the boring test for characteristic of railway ground, laboratory test and field survey for mechanical property. And we also collected the engineering data of ground and the data for the establishment arrangement. These data were examined thoroughly considering residual settlement and strength by high-speed railway design standard. As a result of this study, we can say high-speed railway ground must have enough bearing capacity and be settled under allowable residual settlement(10cm). And also it needs to replace soft ground with high quality sand for the fundamental solution. With the application of replacement method on this study, we expect enough condition to construct stable high-speed railway.

  • PDF

통영광산산(統營鑛山産) 섬아연석(閃亞鉛石)의 화학조성(化學組成) (Chemical Composition of Sphalerite Relating to Mineralization at the Tongyoung mine, Korea)

  • 김문영;신홍자
    • 자원환경지질
    • /
    • 제22권2호
    • /
    • pp.103-115
    • /
    • 1989
  • The Tongyoung deposits are epithermal gold and silver bearing quartz-rhodochrosite vein type deposits of late Cretaceous. They occurs in the andesite and tuff breccia member called Gyeongsang basin. Four mineralizations can be distinguished at the mine based on macrostructures. From earlist stage to lastest stage they are: stage I, base-metal quartz vein; stage II, rhodochrosite vein (IIA) and Pb-Zn vein (IIB); stage III, barren quartz vein; stage IV, calcite-ankeritic rhodochrosite veins. Gold and silver mineralizations occur predominantly in the stage I and IIB. Electrum is closely associated with galena, sphalerite and pyrite, and has chemical compositions of 50.98-64.05 atom % Ag. Sphalerite contains 2.09-5.05 mol % FeS and 0.34-2.01 mol % MnS in the stage I, and 2.01-3.41 mol % FeS and 0.21-2.80 mol % MnS in the stage IIB. The FeS and MnS contents are in general correlated, and shows a characteristic zonal arrangement of electrum. It reveals rhat FeS contents of sphalerite which precipitated before electrum, gradually decreases in a grain during its deposition ranging from about 3.3 to 2 mol %. It may be considered from the above data that an increase of $fs_2$ caused by the oxidation of ore forming fluid is more important that the decrease of temperature.

  • PDF

Investigation of the effect of weak-story on earthquake behavior and rough construction costs of RC buildings

  • Gursoy, Senol;Oz, Ramazan;Bas, Selcuk
    • Computers and Concrete
    • /
    • 제16권1호
    • /
    • pp.141-161
    • /
    • 2015
  • A significant portion of residential areas of Turkey is located in active earthquake zones. In Turkey occurred major earthquakes in last twenty years, such as Erzincan (1992), Kocaeli and $D{\ddot{u}}zce$ (1999), $Bing{\ddot{o}}l$ (2003), Van (2011). These earthquakes have demonstrated that reinforced concrete (RC) buildings having horizontal and vertical irregularities are significantly damaged, which in turn most of them are collapsed. Architectural design and arrangement of load-bearing system have important effect on RC building since architectural design criteria in design process provide opportunity to make this type of buildings safer and economical under earthquake loads. This study aims to investigate comparatively the effects of weak story irregularity on earthquake behavior and rough construction costs of RC buildings by considering different soil-conditions given in the Turkish Earthquake Code. With this aim, Sta4-CAD program based on matrix displacement method is utilized. Considering that different story height and compressive strength of concrete, and infill walls or their locations are the variables, a set of structural models are developed to determine the effect of them on earthquake behavior and rough construction costs of RC buildings. In conclusion, some recommendations and results related to making RC buildings safer and more economical are presented by comparing results obtained from structural analyses.