• 제목/요약/키워드: Bearing Wall Method

검색결과 109건 처리시간 0.024초

연약지반에서 날개벽 기초의 침하량 산정 (Settlement Behavior of Wing-wall type Foundation on Soft Grounds)

  • 장시경;이광열;황재홍;정진교
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1164-1169
    • /
    • 2009
  • Piled raft foundation is commonly used for structure on deep soft soil deposit rather than end bearing piles to control differential settlement. However, it is still expensive for light weight structures. Wing-wall type foundation has been successfully applied to reduce average settlement for light weight structure. This study will further investigate this type of foundation using bench scale experiments on clay and sand. Numerical analysis and approach method are used to verify load settlement curve of wing-wall foundation on experimentally study. Furthermore, normalized settlement curves are applied to define prediction of settlement on wing-wall foundation. In the result settlement on wing-wall foundation can be effectively done by increasing the length of wall instead of number of walls and equation for calculating average settlement can be derived using normalized load settlement curve.

  • PDF

Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load

  • Shadravan, Shideh;Ramseyer, Chris C.;Floyd, Royce W.
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.251-272
    • /
    • 2019
  • This study performed lateral load testing on seventeen wood wall frames in two sections. Section one included eight tests studying structural foam sheathing of shear walls subjected to monotonic loads following the ASTM E564 test method. In this section, the wood frame was sheathed with four different types of structural foam sheathing on one side and gypsum wallboard (GWB) on the opposite side of the wall frame, with Simpson HDQ8 hold down anchors at the terminal studs. Section two included nine tests studying wall constructed with oriented strand board (OSB) only on one side of the wall frame subjected to gradually applied monotonic loads. Three of the OSB walls were tied to the baseplate with Simpson LSTA 9 tie on each stud. From the test results for Section one; the monotonic tests showed an 11 to 27 percent reduction in capacity from the published design values and for Section two; doubling baseplates, reducing anchor bolt spacing, using bearing plate washers and LSTA 9 ties effectively improved the OSB wall capacity. In comparison of sections one and two, it is expected the walls with structural foam sheathing without hold downs and GWB have a lower wall capacity as hold down and GWB improved the capacity.

다중거동함수에 의한 T형 옹벽의 신뢰도 해석 (Reliability Analysis of Cantilever Retaining Wall Using Multiple Failure Modes)

  • 박춘수;송용선;김영필
    • 한국지반공학회지:지반
    • /
    • 제4권2호
    • /
    • pp.15-24
    • /
    • 1988
  • 확정론적 방법으로 안정조건을 만족하는 T형옹벽을 대상으로 지지력, 활동, 전도의 단일파괴류 형에 대해 설계변수를 통계적 독립이고 정규분포로 가정하여 AFOSM 방법으로 신뢰도 해석을하였다. 이를 바탕으로 각 파양모드 사이의 상관성을 고려한 구조물 전체적인 신뢰도는 신뢰지수로 2.05 이었다. 그러므로, 확정론적 설계법에 의해 안전상태로 판단된다 할지라도 신뢰도개념으로는 일반적인 목표신뢰지수(Target reliability index) 3보다 훨씬 낮기 때문에 안정상태로 판단하기는 곤란하다.

  • PDF

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

Effect of shear wall location in rigid frame on earthquake response of roof structure

  • Ishikawa, Koichiro;Kawasaki, Yoshizo;Tagawa, Kengo
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.605-616
    • /
    • 2001
  • The purpose of this study is to investigate the effect of the shear wall location in rigid frames on the dynamic behavior of a roof structure due to vertical and horizontal earthquake motions. The study deals with a gabled long span beam supported by two story rigid frames with shear walls. The earthquake response analysis is carried out to study the responses of the roof: vibration mode, natural period, bending moment and horizontal shear force of the bearings. The study results in the following conclusions: First, a large horizontal stiffness difference between the side frames is caused by the shear wall location, which results in a large vertical vibration of the roof and a large shear force at the side bearings. Second, in this case, the seismic design method for ordinary buildings is not useful in determining the distribution of the static equivalent loads for the seismic design of this kind of long span structures.

장수명 공동주택용 보-기둥 접합부 시공방법 개발 (Development of Beam-Column Connection for The New Apartment Structural System)

  • 윤태호;홍원기;김선국;박선치;윤대영
    • KIEAE Journal
    • /
    • 제10권6호
    • /
    • pp.145-151
    • /
    • 2010
  • Bearing wall system was used extensively in most multi-residential apartment buildings in Korea. However, bearing wall apartments have the lack of architectural plan flexibility, remodelling-incompatible, causing serious economic losses in terms of construction waste. Recently, many researchers have studied the use of Rahmen structure as a potential alternative. The beam-column connection in the paper for long-life apartment housing forms connection of a Rahmen structure utilizing the advantages of steel and reinforced concrete. In addition, reduction of cast-in place concrete and construction schedule is expected by using precast concrete. Reduction effect of quantity decreased construction costs and $CO_2$ emission of key construction materials. However, verifying the feasibility of new construction method entails numerous challenges. Accordingly, the purpose of this study is to analyze the construction feasibility of sleeve, coupler, and pressure welding connections for long-life apartment building structure. A 3D modeling software was used to perform the analysis, and a real scale model was created to verify the results of construction feasibility. By verifying the construction feasibility of beam-column connections, this study will contribute to the efficient application of these methods on construction sites.

대각보강된 철근콘크리트 연결보의 변위비 기반 취약도 함수 개발 (Drift Ratio-based Fragility Functions for Diagonally Reinforced Concrete Coupling Beams)

  • 이창석;한상환;고혜영
    • 한국지진공학회논문집
    • /
    • 제23권2호
    • /
    • pp.131-140
    • /
    • 2019
  • Diagonally reinforced concrete coupling beams (DRCBs) have been widely adopted in reinforced concrete (RC) bearing wall systems. DRCBs are known to act as a fuse element dissipating most of seismic energies imparted to the bearing wall systems during earthquakes. Despite such importance of DRCBs, the damage estimation of such components and the corresponding consequences within the knowledge of performance based seismic design framework is not well understood. In this paper, drift-based fragility functions are developed for in-plane loaded DRCBs. Fragility functions are developed to predict the damage and to decide the repair method required for DRCBs subjected to earthquake loading. Thirty-seven experimental results are collected from seventeen published literatures for this effort. Drift-based fragility functions are developed for four damage states of DRCBs subjected to cyclic and monotonic loading associated with minor cracking, severe cracking, onset of strength loss, and significant strength loss. Damage states are defined in a consistent manner. Cumulative distribution functions are fit to the empirical data and evaluated using standard statistical methods.

Teflon felt를 이용한 Bentall 술식 치험 5례 (Bentall's Operation -5 Case Report-)

  • 정철하
    • Journal of Chest Surgery
    • /
    • 제27권2호
    • /
    • pp.153-156
    • /
    • 1994
  • Bentall`s operation for repair of annuloaortic ectasia has been associated with postoperative bleeding and with false aneurysm of the anastomotic site between the coronary orifice and composite graft.Among 5 cases, 2 cases have been operated direct anastomosis between coronary artery and vascular graft.Remained 3 cases have been operated with doughnutlike Teflon felt buttress.The technique of sandwiching the freed button of aortic wall bearing the coronary artery ostium between an outer Teflon felt doughnutlike buttress and the inner composite graft provides a leak-proof anastomosis.We experienced one case reoperation for bleeding at coronary anastomotic site above method.

  • PDF

PC부재의 접합부 거푸집의 개선방안 연구 -공동주택을 중심으로- (Improvement Plan for Connecting Form of PC Member -Focused on Apartment Buildings-)

  • 김선형;최재휘;김선국;이동훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.9-12
    • /
    • 2010
  • Conventional apartment building projects have favored wall slab structure for the ease of construction and economic viability. However, wall slab structure, consisting of bearing walls, makes remodeling a difficult challenge. In addition, as the amendment to the Building Act in November, 2005 incentivized easy-to-remodel Rahmen structure design for apartment building in terms of floor area ratio and the number of stories, were are seeing more use of PC construct method in apartment building projects gradually. However, PC construction method requires complex connections between beams and columns, making it difficult to install and remove formwork. Furthermore, it is not possible to reuse forms after removal, generating lots of construction wastes, and it is necessary to install new forms again when the size of connection changes in line with modification of column cross-section. Researchers in Korea and elsewhere in the world have focused on structural performance of connection in PC construction method, with little attention to alternative approaches to improving connection forms for PC construction method. Accordingly, this research aims to study an approach to improving connection forms for PC construction method.

  • PDF

면진수조의 2차원 동적 해석기법 개발 (2-D Dynamic analysis method of base-isolated pool structure)

  • 전영선;최인걸;김진웅
    • 전산구조공학
    • /
    • 제8권3호
    • /
    • pp.67-74
    • /
    • 1995
  • 본 연구에서는 면진수조의 2차원 동적 해석기법을 개발하고 축소모델을 사용한 진동대실험을 통하여 해석기법의 타당성을 검증하였다. 수조의 벽체는 집중질량을 사용하여 모델링하였으며 유체의 부가질량을 벽체의 절점에 부가함으로써 유체의 동수역학적인 영향을 고려하였다. 면진수조의 운동방정식은 벽체와 유체로 구성된 상부구조의 운동방정식과 바닥슬래브와 면진장치로 구성된 하부구조의 운동방정식을 연계하여 구하였다. 진동대 실험에서는 투명한 아크릴로 제작한 모형수조를 사용하였으며 면진장치는 4개의 고감쇠 적층 고무베어링(High Damping Laminated Rubber Bearing)을 사용하였다. 축소모델에 의한 실험결과는 대체적으로 해석결과와 잘 일치하였으며 계산결과가 다소 보수적인 것으로 나타났다.

  • PDF