• 제목/요약/키워드: Bearing Movement

검색결과 159건 처리시간 0.024초

3차원 유한요소법을 이용한 장대교량용 가동받침 설계 (Structural Design of a Movable Bearing Shoe for Large Bridge Using Three Dimensional Finite Element Method)

  • 조종래;이부윤
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.51-57
    • /
    • 1999
  • Recently, long large bridges are built for mass transportation. Movable bearing shoes are important components of the bridges because they support movement of translation and rotation of bridge. In design stage of the long large bridges, detailed analyses using the finite element method are performed to guarantee safety and reliability. For that purpose, three-dimensional modeling is carried out by I-DEAS software and finite element analysis by ANSYS software. Results of the analyses are reviewed and important design factors for movable bearing shoes are discussed.

  • PDF

극저온 냉동기 헬륨 압축기용 선형 탄성 베어링의 해석 및 설계 (Design and analysis of a newly devised linear flexure bearing(KIMM-Ml) for cryogenic compressors)

  • 조영선;최상규;박성제;김효봉;우호길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1091-1098
    • /
    • 2003
  • Flexure bearings have been used in linear-resonant compressors to maintain a non-contacting clearance seal between the piston and cylinder. There are two types of tangential cantilever bearing and spiral arm bearing with flexure bearings. A newly devised linear flexure bearing (KIMM-Ml) for compression refrigeration machines is disclosed having improved tight gas clearance maintaining capability for better system performance. KIMM-Ml is an integrated device comprising an axially moving diaphragm with circumferentially arranged arc-shaped flexure blades secured between rim and hub spacers, which turn out to have higher radial stiffness than the one with circumferential tangential cantilever flexure blades. It is expected for KIMM-Ml to play a key role in designing long life, special purpose compression refrigeration machines by providing frictionless, non-wearing, linear movement and radial support for the machines as well as a gas clearance seal by maintaining extremely tight clearances between piston and cylinder.

  • PDF

A Novel High Precision Electromagnetic Suspension for Long-Stroke Movement and Its Performance Evaluation

  • Lee, Ki-Chang;Moon, Seokhwan;Ha, Hyunuk;Park, Byoung-Gun;Kim, Ji-Won;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.514-522
    • /
    • 2014
  • A new type of high precision electromagnetic suspension (EMS) which can support heavy tray along long stroke rail is proposed in this paper. Compared with the conventional EMS, the suggested moving-core typed EMS has the levitation electromagnets (EMs) on the fixed rail. This scheme has high load capability caused by iron-core and enables simple tray structure. Also it does not have precision degradation caused by heat generation from EMs, which is a drawback of conventional EMS. With these merits, the proposed EMS can be an optimal contactless linear bearing in next generation flat panel display (FPD) manufacturing process if the ability of long stroke movement is proved. So a special Section Switching Algorithm (SSA) is derived from the resultant force and moment equations of the levitated tray which enables long stroke movement of the tray. In order to verify the feasibility of the suggested SSA, a simple test-setup of the EMS with 2 Section-changes is made up and servo-controlled in the simulation and experiment. The simulation shows the perfect changeover the EMs, and the experiment shows overall control performance of under ${\pm}40{\mu}m$ gap deviations. These results reveal that the newly suggested contactless linear bearing can simultaneously achieve high load capability and precision gap control as well as long stroke.

만성편마비 환자의 재활 운동 유형이 일어서기 동작의 운동학 및 운동역학적 변인에 미치는 영향 (The Effect of Rehabilitation Training Programs on the Kinetic and Kinematic Parameters During Sit-To-Stand in Chronic Stroke Patients)

  • 유연주;윤태진;은선덕
    • 한국운동역학회지
    • /
    • 제16권2호
    • /
    • pp.121-134
    • /
    • 2006
  • The purpose of this study was to analyze the effect of different types of rehabilitation training program on the kinetic and kinematic parameters during sit-to-stand movement(STS) in chronic stroke patients. Two groups of hemiparetic patients, experimental and control, participated in the study. The experimental group participated in a 10-week training program (three sessions/wk, $1{\sim}1.5\;hr/session$) consisting of a warm-up, aerobic exercises, lower extremity strengthening. and a cool-down. The control group participated in an aerobic exercise. Three dimensional kinematic analysis and force platform; were used to analyze the duration of STS, lower extremity angle, and weight bearing ability. The experimental group which had more strength of lower extremity displayed decrease in duration of STS. However, the control group showed increases in duration during sit-to-stand movement. The control group flexed their trunk more than the group did Therefore, it took more time to extend their trunk during STS. The duration in sit-to-stand was affected by the strength of lower extremity and the angle of trunk movement. The angles of ankle and knee joint had an influenced on duration of STS. The post experimental group performed with their feet near the front leg of the chair during sit-to-stand, therefore the duration was decreased. The repetitive sit-to-stand movements as a resistance exercise was effective to hemiparetic patients in learning mechanism of sit-to-stand. The control group showed decreased differences in the vertical ground reaction forces between paretic and non-paretic limbs. Their training program included strengthening exercise that may help improving weight bearing ability. The control group showed increases in the center of pressure in the anteroposterior and mediolateral displacement. This means that the stability of movement was low in the control group. Their training program which combined aerobic and strengthening exercises that are more effective to improve the stability of movement.

기능적 전기자극시 비 마비측에 탄력밴드를 적용한 체중지지훈련이 뇌졸중 환자의 보행과 균형에 미치는 영향 (Effects of Weight-Bearing Training with Elastic Bands on less - Affected Side during Functional Electronic Stimulation on Walking and Balance in Stroke Patients)

  • 정채민;우영근;원종임;김수진
    • PNF and Movement
    • /
    • 제20권3호
    • /
    • pp.417-430
    • /
    • 2022
  • Purpose: The purpose of this study was to examine the effect of weight-bearing training with an elastic band during functional electrical stimulation (FES) on walking and balance functions in stroke patients. Methods: Twenty patients with chronic stroke were divided into an experimental group assigned to weight-bearing training with an elastic band during functional electrical stimulation (FES; n=10) and a control group assigned to weight-bearing training alone during FES (n=10). The patients in both groups attended physical therapy sessions five times a week for four consecutive weeks. The experimental group underwent weight-bearing training with an elastic band during FES five times a week for four weeks. The control group underwent weight-bearing training during FES. Balance parameters were measured before and after the intervention using the Balancia program. Moreover, all patients were evaluated using the Berg Balance Scale (BBS), the Time Up and Go Test (TUGT), and the Wisconsin Gait Scale (WGS) before and after each intervention. Results: The results showed that weight-bearing training with elastic bands during FES and weight-bearing training during FES had a significant effect on the affected side's weight-bearing ratio, BBS, TUGT, and WGS in both groups (p <0.05). Additionally, the results showed that the changes observed in the two groups indicate significant differences in path length, average speed, BBS score, TUGT time, and WGS score between the groups (p < 0.05). Conclusion: In patients with stroke, weight-bearing training with an elastic band during FES affected on walking and balance. Therefore, it is an optional intervention for the balance and walking ability of stroke patients.

Discovery Elbow System arthroplasty polyethylene bearing exchange: outcomes and experience

  • Daniel L J Morris;Katherine Walstow;Lisa Pitt;Marie Morgan;Amol A Tambe;David I Clark;Timothy Cresswell;Marius P Espag
    • Clinics in Shoulder and Elbow
    • /
    • 제27권1호
    • /
    • pp.18-25
    • /
    • 2024
  • Background: The Discovery Elbow System (DES) utilizes a polyethylene bearing within the ulnar component. An exchange bearing requires preoperative freezing and implantation within 2 minutes of freezer removal to allow insertion. We report our outcomes and experience using this technique. Methods: This was an analysis of a two-surgeon consecutive series of DES bearing exchange. Inclusion criteria included patients in which exchange was attempted with a minimum 1-year follow-up. Clinical and radiographic review was performed 1, 2, 3, 5, 8 and 10 years postoperative. Outcome measures included range of movement, Oxford Elbow Score (OES), Mayo Elbow Performance Score (MEPS), complications and requirement for revision surgery. Results: Eleven DESs in 10 patients were included. Indications were bearing wear encountered during humeral component revision (n=5); bearing failure (n=4); and infection treated with debridement, antibiotics and implant retention (DAIR; n=2). Bearing exchange was conducted on the first attempt in 10 cases. One case required a second attempt. One patient developed infection postoperatively managed with two-stage revision. Mean follow-up of the bearing exchange DES was 3 years. No further surgery was required, with no infection recurrence in DAIR cases. Mean elbow flexion-extension and pronosupination arcs were 107°(±22°) and 140° (±26°). Mean OES was 36/48 (±12) and MEPS was 83/100 (±19). Conclusions: Our results support the use of DES bearing exchange in cases of bearing wear with well-fixed stems or acute infection. This series provides surgeons managing DES arthroplasty with management principles, successful and reproducible surgical techniques and expected clinical outcomes in performing DES polyethylene bearing exchange. Level of evidence: IV.

수치해석에 의한 터널 복공의 역학적 거동 및 균열 특성에 관한 연구 (On Mechanical Behavior and Cracking Characteristics of Tunnel Lining by Numerical Analysis)

  • 이대혁;김재순;이희근;김성운
    • 터널과지하공간
    • /
    • 제8권2호
    • /
    • pp.146-156
    • /
    • 1998
  • Nemerical algorithms were developed to analyze the behavior of the double lining as well as ground mass separately or simultaneously. A lining interface element was especially developed, verified and applied to the study on the coupled interaction of shotcrete and the concrete lining. It could be known fro parameter studys on double lining support systems that as the contact surface between shotcrete and concrete lining was rougher, the more decreased bearing capacity against the cracking of the system. If the thickness of the shotcrete increased, the bearing capacity of the double lining also increased linearly with the thickness. If the thickness of the concrete lining increased, the bearing capacity of the double lining had the relationship of the characteristic S-shape of a sigmoid function with the thickness. When the thickness increased over a given value, it was not useful to increase more the thickness because bearing capacity had no remarkable change. It could be concluded that the behavior of the shotcrete and concrete lining was generally reversed before and after the ratio of horizontal to vertical earth preassure of 1.0 and 0.5 respectively. Therefore, we could guess that the movement which two shotcrete and concrete lining deflect toward each other around the crown caused a friction between two linings and thus this disadvantageous effect could contribute to reducing the bearing capacity against the cracking.

  • PDF

롤러 베어링의 동역학 해석을 위한 접촉 모델링 기법의 검증 (Validation of Contact Modeling Technique for Dynamic Analysis of Roller Bearing System)

  • 정은교;최진환;임성수;류한식
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.115-123
    • /
    • 2007
  • In this paper, an analytical model is developed to describe the dynamic characteristics of a roller bearing. In order to obtain accurate dynamic response of roller bearing, each roller is modeled as a rigid body, which has radial and axial movement and rotational constraints. Beam element between outer race segments is used to consider flexibility of outer race. Beam deflection is calculated from beam forces and used for contact between roller and outer race. The efficient contact search kinematics and algorithms in the context of the compliance contact model are implemented to detect the interactions between roller and race for the sake of speedy and robust solutions. The numerical results are validated with another analysis results which are calculated using waviness condition. Increasing rollers, dynamic responses are compared with each other. In order to confirm dynamic behavior and nonlinear characteristic of roller bearing, Poincare map is used.

뇌졸중 환자들을 위한 체간 안정화 로봇의 정적인 앉기와 서기 대칭성 평가의 검사-재검사간 신뢰도와 기준 관련 타당도 (The Test-Retest Reliability and Criterion-Related Validity of a Trunk Stability Robot When Measuring Static Sitting and Standing Symmetry in Stroke Patients)

  • 안승헌;김동훈;장영민
    • PNF and Movement
    • /
    • 제16권3호
    • /
    • pp.405-414
    • /
    • 2018
  • Purpose: The purpose of this study was to examine test-retest reliability and criterion-related validity of a trunk stability robot when measuring the weight-bearing symmetry static sitting and standing in stroke patients. Methods: For 27 stroke patients, weight-bearing symmetry was assessed twice, 7 days apart. The intraclass correlation coefficient (ICC2,1) and minimal detectable change (MDC) were used to examine the level of agreement between test and retest. The criterion-related validity of weight -bearing symmetry was demonstrated by Spearman correlation of modified Barthel index (MBI), the sit to stand test (STS), the timed up & go Test (TUG), and the function in sitting test (FIST). Results: the test-retest agreements were excellent for the weight-bearing symmetry of static sitting (ICC2,1: 0.90) and standing (ICC2,1: 0.89). It all showed that the acceptable MDC for the weight-bearing symmetry of static sitting and standing was 0.11 and 0.16, respectively (highest possible score<20 %), indicating that the measures had a small and acceptable degree of measurement error. The weight-bearing symmetry of static sitting was significantly correlated with the TUG(r=-0.45) and FIST(r=0.46)(p<0.05); the weight-bearing symmetry of static standing was also significantly correlated with MBI (r=0.65), TUG (r=-0.67), FIST (r=0.61)(p<0.01), and STS (r=-0.47)(p<0.05). Conclusion: The weight-bearing symmetry of static sitting and standing assessed by the trunk stability robot showed highly sufficient test-retest agreement and mild-to-moderate validity. It could also be useful for clinicians and researchers to evaluate balance performance and monitor functional change in stroke patients.

스쿼트 운동 시 수의적 내·외측 체중이동이 내측광근과 외측광근 활성 비율에 미치는 영향 (Effects of Voluntary Change of Weight Bearing on Vastus Medialis Oblique and Vastus Lateralis Ratio During Squat Exercise)

  • 이재호;김진선;신용욱;유예지;이상열;김용훈
    • PNF and Movement
    • /
    • 제12권3호
    • /
    • pp.167-171
    • /
    • 2014
  • Purpose: The purpose of this study was to show the effects of voluntary change of weight bearing on the vastus medialis oblique and the vastus lateralis ratio during squat exercise. Methods: Twenty-four healthy adults were recruited for this study. The subjects performed squat exercise with median weight bearing, lateral weight bearing and non-changed weight bearing. The muscle activities of the vastus medialis oblique and the vastus lateralis were measured during the squat for all three conditions. The measured data were analyzed using one-way ANOVA to investigate the effect of muscle activation on the each condition. The statistical analyses were performed using SPSS ver. 17.0, and a p-value of less than 0.05 was considered significant for all cases. A post-hoc test was performed using Tukey's test. Results: The study showed that the vastus medialis oblique and the vastus lateralis ratio significantly changed according to the voluntary change of weight bearing during a squat. The vastus medialis oblique and the vastus lateralis ratio significantly decreased under the condition of voluntary lateral weight bearing. Conclusion: We suggest squat exercise on median weight bearing to increase the vastus medialis oblique and the vastus lateralis ratio. If your patient has.