• Title/Summary/Keyword: Bearing Arrangement

Search Result 81, Processing Time 0.031 seconds

Full Duplex Robot System for Transferring Flat Panel Display Glass (디스플레이용 판유리 이송을 위한 양방향 이송 로봇장치)

  • Lee, Dong Hun;Lee, Chibum;Kim, Sung Dong;Cho, Young Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.996-1002
    • /
    • 2013
  • This study addresses the development of a full duplex robotic system for transferring flat-panel display glass. We propose to accomplish this using a bidirectional linear transfer mechanism in place of the conventional rotary transfer mechanism. The developed full duplex robot comprises a driving part that carries the glass panel laterally, vertical part that can be moved up and down by means of a ball screw and linear motion guide arrangement, and hand part that slides by the cylinder of the driving part along the guide rail with a V-guide bearing attached to the bottom of the support. In addition, an alignment part prevents the hand part from derailing and holds the hand part while the driving part moves horizontally. The full duplex robot lifts and drives a glass panel directly while transferring it to the buffer and does not require rotational motion. Therefore, both transferring and stacking are realized with a single device. This device can be used in existing industrial facilities as an alternative to existing industrial robots in current as well as future process lines. The proposed full duplex robot is expected to save considerable amounts of time and space, and increase product throughput.

A study about determination of preliminary design & minimum reinforcement ratios

  • KOC, Varol;EMIROGLU, Yusuf
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.673-692
    • /
    • 2016
  • In the standards, minimum reinforcement ratios are presented as the least reinforcement ratios that bearing elements should have in a way to include all systems and in general. However, naturally these general minimum ratios might be presented as being lower than the normally required reinforcement ratios by criteria such as system size, bearing system arrangement, section situation and distributions of the elements and earthquake effect. In this case, minimum reinforcement ratios may remain as meaningless restrictions. Then grouping the criterion that might affect reinforcement ratios according to certain parameters and creating minimum reinforcement ratios regarding preliminary design will provide ease and safety during the project designing. Moreover, it will enable fast and simple examinations in the beginning of project control and evaluation process. By means of the data which could be defined as "preliminary design & minimum reinforcement ratios", a more realistic and safe restriction compared to general minimum reinforcement ratios could be presented. As a result of numerous comprehensive studies, reinforcement ratios to include all certain systems might be obtained. Today, thanks to the development level of finite elements programs which can make reinforced concrete modelling, with the studies that are impossible to carry out beforehand, this deficiency in the minimum reinforcement ratios in the standarts may at least be partially made up with the advisory regulation of preliminary design & minimum reinforcement ratios. As the structure of the system to be examined and the diversity of the parameters range from the specific to the general, preliminary design & minimum reinforcement ratios will approximate to general minimum reinforcement ratios in real terms. By focusing on a more specific system structure and diversity of the parameters, preliminary design and even design reinforcement ratios will be approximated. In this preliminary study, a route between these two extremes was attempted to be followed. Today, it is possible to determine suggested practical ratios for project designs through carrying out numerous studies.

Design and analysis of slotted shear walls equipped with energy dissipating shear connectors

  • Shen, Shaodong;Nie, Xin;Pan, Peng;Wang, Haishen
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.539-544
    • /
    • 2017
  • Shear walls have high stiffness and strength; however, they lack energy dissipation and repairability. In this study, an innovative slotted shear wall featuring vertical slots and steel energy dissipation connectors was developed. The ductility and energy dissipation of the shear wall were improved, while sufficient bearing capacity and structural stiffness were retained. Furthermore, the slotted shear wall does not support vertical forces, and thus it does not have to be arranged continuously along the height of the structure, leading to a much free arrangement of the shear wall. A frame-slotted shear wall structure that combines the conventional frame structure and the innovative shear wall was developed. To investigate the ductility and hysteretic behavior of the slotted shear wall, finite element models of two walls with different steel connectors were built, and pushover and quasi-static analyses were conducted. Numerical analysis results indicated that the deformability and energy dissipation were guaranteed only if the steel connectors yielded before plastic hinges in the wall limbs were formed. Finally, a modified D-value method was proposed to estimate the bearing capacity and stiffness of the slotted shear wall. In this method, the wall limbs are analogous to columns and the connectors are analogous to beams. Results obtained from the modified D-value method were compared with those obtained from the finite element analysis. It was found that the internal force and stiffness estimated with the modified D-value method agreed well with those obtained from the finite element analysis.

Numerical Evaluation of Pile Installation Effects as Settlement Reducers for Concrete Tracks (수치해석을 통한 콘크리트궤도 침하감소 목적의 말뚝기초 설치효과 평가)

  • Lee Su-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.73-83
    • /
    • 2005
  • Recently, foundation designs based on piled raft concept have been increasing, where the piles are required not to ensure the overall stability of the foundation but to act as settlement reducer. When a concrete track is constructed on soft ground, excessive settlements may occur, while it rarely has bearing capacity problems. In this case, the settlement of the concrete track may be effectively reduced by arranging a small number of small-diameter piles beneath the track. This paper presents the effect of pile installation on the reduction of concrete track's settlement. A 3D finite difference method was employed to model the piled concrete tracks. A parametric study was carried out to assess the effect of varying soil condition and pile arrangements. From the analysis results, it is verified that the effect of the pile installation is significant to effectively reduce the settlement of concrete track. Optimal number of pile rows and pile spacings was proposed for the economical design of a piled concrete track. The bearing mechanism of piles was also investigated by analyzing load sharing characteristics of pile according to soil conditions and pile arrangements.

Mechanical Characteristics of Retractable Radial Cable Roof Systems (개폐식 방사형 케이블 지붕 시스템의 역학적 특성)

  • Park, Kang-Geun;Lee, Dong-Woo;Choe, Dong-Il
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.2
    • /
    • pp.21-32
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics on the geometric nonlinear behavior of radial cable roof systems for long span retractable cable roof structures. The retractable roof is designed as a full control system to overcome extreme outdoor environments such as extreme hot or cold weather, strong wind or sunlight, and the cable roof greatly can reduce roof weight compared to other rigid structural system. A retractable cable roof system is a type of structures in which the part of entire roof can be opened and closed. The radial cable roof is an effective structural system for large span retractable roofs, the outer perimeter of the roof is a fixed membrane roof and the middle part is a roof that can be opened and closed. The double arrangement cables of a radial cable truss roof system with reverse curvature works more effectively as a load bearing cables, the cable system can carry vertical load in up and downward direction. In this paper, to analyze the mechanical characteristics of a radial cable roof system with central posts, the authors will investigate the tensile forces of bearing cables, stabilized cables, ring cables, and the deflection of roof according to the height of the post or hub that affects the sag ratio of cable truss. The tensile forces of the cables and the deflection of the roof are compared for the cases when the retractable roof is closed and opened.

Anti-seismic behavior of composite precast utility tunnels based on pseudo-static tests

  • Yang, Yanmin;Tian, Xinru;Liu, Quanhai;Zhi, Jiabo;Wang, Bo
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.233-244
    • /
    • 2019
  • In this work, we have studied the effects of different soil thicknesses, haunch heights, reinforcement forms and construction technologies on the seismic performance of a composite precast fabricated utility tunnel by pseudo-static tests. Five concrete specimens were designed and fabricated for low-cycle reciprocating load tests. The hysteretic behavior of composite precast fabricated utility tunnel under simulated seismic waves and the strain law of steel bars were analyzed. Test results showed that composite precast fabricated utility tunnel met the requirements of current codes and had good anti-seismic performance. The use of a closed integral arrangement of steel bars inside utility tunnel structure as well as diagonal reinforcement bars at its haunches improved the integrity of the whole structure and increased the bearing capacity of the structure by about 1.5%. Increasing the thickness of covering soil within a certain range was beneficial to the earthquake resistance of the structure, and the energy consumption was increased by 10%. Increasing haunch height within a certain range increased the bearing capacity of the structure by up to about 19% and energy consumption by up to 30%. The specimen with the lowest haunch height showed strong structural deformation with ductility coefficient of 4.93. It was found that the interfaces of haunches, post-casting self-compacting concrete, and prefabricated parts were the weak points of utility tunnel structures. Combining the failure phenomena of test structures with their related codes, we proposed improvement measures for construction technology, which could provide a reference for the construction and design of practical projects.

Development of Piston Ring Lubrication for the Ring Pack Arrangement (링팩내의 피스톤링 윤활에 관한 연구)

  • 심현해;권오관
    • Tribology and Lubricants
    • /
    • v.1 no.1
    • /
    • pp.46-58
    • /
    • 1985
  • The basic mechanism of lubrication between the piston ring and the cylinder wall is developed theoretically under the assumption of a reciprocating and dynamically loaded slider-bearing pair of parabolic form and smooth plane. A numerical computation for the prediction in cyclic variations of film thickness, net lubricant flow and frictional behaviour is attempted, and the influenec on the performance characteristics due to the ring height, ring face radius of curvature and the degree of offset, is also examined. The computational procedures develeped for a single ring system are extended and applied further to the complex problem of a ring pack system. It is well known that the ring pressure which is the total load on a ring, can be obtained from either an experimental measurement or a gas flow analysis. In this work, the latter of a gas low analysis method was used to calculate the pressures. It is remarked that the work done was focused on the role of flow continuity and lubricant starvation within the ring pack lubrication.

A study on soft soil improvement method of Seoul-Busan high-speed railway 6-2nd construction (경부고속철도 제6-2공구 노반신설 공사 중 치환공법을 통한 연약지반 처리연구)

  • Jung, Jae-Min;Im, Chang-Bin;Choi, Sang-Hen;Lee, Gwang-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1764-1773
    • /
    • 2011
  • This study is about how to handle very soft grounds consisted of coal and household garbage(organic soil), clay, silt and so on, through examining Seoul-Busan High-Speed railway 6-2nd section. The soft soil might induce long term settlement and lead to structure's differential settlement eventually. So, we performed the boring test for characteristic of railway ground, laboratory test and field survey for mechanical property. And we also collected the engineering data of ground and the data for the establishment arrangement. These data were examined thoroughly considering residual settlement and strength by high-speed railway design standard. As a result of this study, we can say high-speed railway ground must have enough bearing capacity and be settled under allowable residual settlement(10cm). And also it needs to replace soft ground with high quality sand for the fundamental solution. With the application of replacement method on this study, we expect enough condition to construct stable high-speed railway.

  • PDF

Chemical Composition of Sphalerite Relating to Mineralization at the Tongyoung mine, Korea (통영광산산(統營鑛山産) 섬아연석(閃亞鉛石)의 화학조성(化學組成))

  • Kim, Moon Young;Shin, Hong Ja
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.103-115
    • /
    • 1989
  • The Tongyoung deposits are epithermal gold and silver bearing quartz-rhodochrosite vein type deposits of late Cretaceous. They occurs in the andesite and tuff breccia member called Gyeongsang basin. Four mineralizations can be distinguished at the mine based on macrostructures. From earlist stage to lastest stage they are: stage I, base-metal quartz vein; stage II, rhodochrosite vein (IIA) and Pb-Zn vein (IIB); stage III, barren quartz vein; stage IV, calcite-ankeritic rhodochrosite veins. Gold and silver mineralizations occur predominantly in the stage I and IIB. Electrum is closely associated with galena, sphalerite and pyrite, and has chemical compositions of 50.98-64.05 atom % Ag. Sphalerite contains 2.09-5.05 mol % FeS and 0.34-2.01 mol % MnS in the stage I, and 2.01-3.41 mol % FeS and 0.21-2.80 mol % MnS in the stage IIB. The FeS and MnS contents are in general correlated, and shows a characteristic zonal arrangement of electrum. It reveals rhat FeS contents of sphalerite which precipitated before electrum, gradually decreases in a grain during its deposition ranging from about 3.3 to 2 mol %. It may be considered from the above data that an increase of $fs_2$ caused by the oxidation of ore forming fluid is more important that the decrease of temperature.

  • PDF

Investigation of the effect of weak-story on earthquake behavior and rough construction costs of RC buildings

  • Gursoy, Senol;Oz, Ramazan;Bas, Selcuk
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.141-161
    • /
    • 2015
  • A significant portion of residential areas of Turkey is located in active earthquake zones. In Turkey occurred major earthquakes in last twenty years, such as Erzincan (1992), Kocaeli and $D{\ddot{u}}zce$ (1999), $Bing{\ddot{o}}l$ (2003), Van (2011). These earthquakes have demonstrated that reinforced concrete (RC) buildings having horizontal and vertical irregularities are significantly damaged, which in turn most of them are collapsed. Architectural design and arrangement of load-bearing system have important effect on RC building since architectural design criteria in design process provide opportunity to make this type of buildings safer and economical under earthquake loads. This study aims to investigate comparatively the effects of weak story irregularity on earthquake behavior and rough construction costs of RC buildings by considering different soil-conditions given in the Turkish Earthquake Code. With this aim, Sta4-CAD program based on matrix displacement method is utilized. Considering that different story height and compressive strength of concrete, and infill walls or their locations are the variables, a set of structural models are developed to determine the effect of them on earthquake behavior and rough construction costs of RC buildings. In conclusion, some recommendations and results related to making RC buildings safer and more economical are presented by comparing results obtained from structural analyses.