• Title/Summary/Keyword: Bean Threshing

Search Result 3, Processing Time 0.016 seconds

Development of The Bean Threshing System using Independent Driving (독립구동방식의 콩 탈곡기 시스템 개발)

  • Jang, BongChoon;Kim, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4124-4129
    • /
    • 2013
  • This purpose of this research is to build up a prototype of bean threshing machine after three dimensional design which can be driven independently by engine and hydraulic equipments and wheels. To accomplish the functionality of bean threshing machine the cutters are placed in a swirl type on a threshing drum the thresing capability would be improved. Also a exit pipe was designed to clear the remains to solve the past problems that the normal machines had. A fan was designed to blow to send the waste only to the outside. Only clean beans will be transferred through a blowing fan wind power to exit pipe and the system was designed to help the worker to collect the beans in front of the machine. This threshing machine using independent driving engine which can provide the power to drive the system and do the threshing is the first developed technology in domestic area through the University and Industry cooperation.

Development of Threshing Cylinder for Reduction of Soybean Seed Damage (콩 탈곡손상 절감을 위한 콩 탈곡통 개발)

  • Cho, Yong-Jin;Lee, Kyou-Seung
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.380-386
    • /
    • 2010
  • This study was carried out to develop soybean thresher which is able to reduce the soybean threshing damage in comparison to the conventional thresher. A threshing cylinder with different diameter of 480 and 384 mm at each end and with one quarter disc pegs of 60 mm radius was developed and attached to the prototype thresher. A conventional thresher which has a threshing cylinder with $\wedge$ type threshing pegs and same diameter of 480 mm at each end was used for comparative test. A series of comparative performance test was conducted using sun-yu and chung-ja soybean. For sun-yu bean, which is white and usually used for soybean paste and soy sauce, the ratio of damaged beans of prototype ranged 2-3% for 330-360 rpm which is recommended cylinder speed by manufacturer. The ratio of damaged beans of conventional thresher was 3-4% for the same range of cylinder speed. chung-ja beans with black color usually shows high damaged ratio compared with white beans, thus cylinder speed of 250-300 rpm is recommended by manufacturer to reduce the damaged ratio. For this range of cylinder speed, the damaged ratio of prototype was 1.3-1.4% and it was 2.7-6.1% for the conventional thresher. Thus prototype is able to reduce the damaged ratio 1.5-5.0% compared with conventional thresher. Prototype shows 0.4% of unthreshed soybean ratio for sun-yu bean in the optimum range of cylinder speed and it was 0.87% for the conventional thresher. For chung-ja bean, the ratio of unthreshed soybean was almost same for both prototype and conventional thresher with the value of 4.0%. The reason of high unthreshed soybean ratio for chung-ja bean compared sun-yu bean is due to the high seed moisture content of 29.11% which is much higher than that of the recommended.

Design and Construction of a Pick-up Type Pulse Crop Harvester

  • Lee, Ki Yong;Yoo, Soonam;Han, Byung Hee;Choi, Yong;Choi, Il Su
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.12-22
    • /
    • 2017
  • Purpose: This aim of this study was to develop a pick-up type pulse crop harvester for harvesting cut and dried pulse crop. Methods: The pick-up type pulse crop harvester was designed and constructed. Its specifications and operating performance were investigated. Results: Compared with conventional bean harvesters, the pick-up type pulse crop harvester adopted seven rows of chains with tines to pick-up the cut and dried pulse crop on a flat or ridged field, two transverse threshing drums with steel wire teeth to reduce the threshing speed, and a tilt plate and plastic bucket elevator for conveying clean grain to reduce damage. The threshing speed and the oscillating frequency of the separating and cleaning parts according to crop type and condition could be varied easily to efficiently use engine power and to improve harvesting performance. The harvester showed forward speed ranges of 0 ~ 1.5 m/s during harvesting operation, and 0 ~ 2.5 m/s during road travelling. The pick-up width of the harvester was about 1 m. Conclusions: The pick-up type self-propelled 51.5 kW harvester was designed and constructed to harvest cut and dried pulse crop. The effective field capacity of the harvester was predicted as above 40 a/h.