• Title/Summary/Keyword: Beam-spring model

Search Result 207, Processing Time 0.02 seconds

Damage Detection of Structures using Peak and Zero of Frequency Response Functions (주파수 응답함수의 피크와 제로를 이용한 구조물의 손상탐지)

  • Park, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.69-79
    • /
    • 2007
  • In this paper, a technique to detect structural damage and estimate its severity using peaks and zeros of frequency response functions (FRFs) is developed. The peaks in FRFs represent the natural frequencies of the structure and the zeros provide additional information. The characteristics of peaks and zeros are defined and the calculation procedure to obtain the peaks and zeros from the relationship between frequency response function and stiffness and mass matrices are clearly explained. A structural system identification theory which is utilizing the sensitivity of stiffness of a structural member to eigenvalues, i.e., peaks and zeros, is established. The proposed method can identify damage location and its severity, with natural and zero frequencies, by estimating structural stiffness of the structure in the process of making a analytical model The accuracy and feasibility is demonstrated by numerical models of a spring-mass system and a beam structure.

Development of optimized TBM segmental lining design system (TBM 세그먼트 라이닝 최적 설계 시스템 개발)

  • Woo, Seungjoo;Chung, Eunmok;Yoo, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.13-30
    • /
    • 2016
  • This paper concerns the development of an optimized TBM segmental lining design system for a subsea tunnel. The subsea tunnel is normally laid down under the sea water and submarine ground which consists of soil or rock. The design system is the series of process which can predict segmental lining member forces by ANN (artificial neural network system), analyze suitable section for the designated ground, construction and tunnel conditions. Finally, this lining design system aims to be connected with a BIM system for designing the subsea tunnel automatically. The lining member forces are predicted based on the ANN which was calculated by a FEM (finite element analysis) and it helps designers determine its segmental lining dimension easily without any further FE calculations.

Evaluation of Progressive Collapse Resistance of Steel Moment Frame with WUF-B Connection and Composite Slab using Equivalent Energy-based Static Analysis (WUF-B 접합부 및 합성슬래브로 설계된 철골모멘트골조의 에너지 기반 근사해석을 이용한 연쇄붕괴 저항성능 평가)

  • Noh, Sam-Young;Park, Ki-Hwan;Hong, Seong-Cheol;Lee, Sang-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.19-28
    • /
    • 2018
  • The progressive collapse resistance performance of a steel structure constructed using the moment frame with the WUF-B connection and the composite slabs was evaluated. GSA 2003 was adapted for the evaluation. Additionally the structural robustness and the sensitivity against the progressive collapse were analyzed. In the numerical analysis, a reduced model comprised of the beam and spring elements for WUF-B connection was adapted. The composite slab was modeled using the composite-shell element. Instead of the time-consuming dynamic analysis for the effect of the sudden column removal, the equivalent energy-based static analysis was effectively applied. The analysis results showed that the structure was the most vulnerable to in the case of the internal column removal, however it satisfied the chord rotation criterion of GSA 2003 due to the contribution of the composite slab which improved the stiffness of structure. In the robustness evaluation, the structural performance showed more than 2.5 times of the requirement according to GSA 2003, and the structural sensitivity analysis indicated the decrease of 33% of the initial structural performance.

A Study on Joint Damage Model and Neural Networks-Based Approach for Damage Assessment of Structure (구조물 손상평가를 위한 접합부 손상모델 및 신경망기법에 관한 연구)

  • 윤정방;이진학;방은영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.9-20
    • /
    • 1999
  • A method is proposed to estimate the joint damages of a steel structure from modal data using the neural networks technique. The beam-to-column connection in a steel frame structure is represented by a zero-length rotational spring of the end of the beam element, and the connection fixity factor is defined based on the rotational stiffness so that the factor may be in the range 0~1.0. Then, the severity of joint damage is defined as the reduction ratio of the connection fixity factor. Several advanced techniques are employed to develop the robust damage identification technique using neural networks. The concept of the substructural indentification is used for the localized damage assessment in the large structure. The noise-injection learning algorithm is used to reduce the effects of the noise in the modal data. The data perturbation scheme is also employed to assess the confidence in the estimated damages based on a few sets of actual measurement data. The feasibility of the proposed method is examined through a numerical simulation study on a 2-bay 10-story structure and an experimental study on a 2-story structure. It has been found that the joint damages can be reasonably estimated even for the case where the measured modal vectors are limited to a localized substructure and the data are severely corrupted with noise.

  • PDF

Reinforcement of shield tunnel diverged section with longitudinal member stiffness effect (종방향 부재의 강성효과를 고려한 쉴드 터널 분기부 보강 및 해석기법)

  • Lee, Gyu-Phil;Kim, Do
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.675-687
    • /
    • 2019
  • In recent years, the needs for double deck-tunnels have increased in large cities due to the increase in traffic volume and high land compensation costs. In Korea, a network type tunnel which is smaller than general road tunnels and crosses another tunnel underground is planned. In the shield tunnel joints between the existing shield tunnel and the box-type enlargement section, a partial steel-concrete joint is proposed where the bending moment is large instead of the existing full-section steel joint. In order to analysis the enlargement section of the shield tunnel diverged section to reflect the three-dimensional effect, the two-dimensional analysis model is considered to consider the column effect and the stiffness effect of the longitudinal member. A two-dimensional analysis method is proposed to reflect the stiffness of the longitudinal member and the column effect of the longitudinal point by considering the rigidity of the longitudinal member as the elastic spring point of the connecting part in the lateral model. As a result of the analysis of the model using the longitudinal member, it was considered that the structural safety of the partial steel-concrete joint can be secured by reducing the bending moment of the joint and the box member by introducing the longitudinal member having the stiffness equal to or greater than a certain value.

Measurement of Quality Parameters of Honey by Reflectance Spectra

  • Park, Chang-Hyun;Yang, Won-Jun;Sohn, Jae-Hyung;Kim, Jong-Hoon
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1530-1530
    • /
    • 2001
  • The objectives of this study were to develop models to predict quality parameters of Korean bee-honeys by visible and NIR spectroscopic technique. Two kinds of bee-honey fronl acacia and polyflower sources were tested in this study. The honeys were harvested in the spring of 2000 and stored in the storage facility at 20$^{\circ}C$ during experiments. Total of 394 samples of honey were analyzed. Reflectance spectra, moisture contents, ash, invert sugar, sucrose, F/G (fructose/glucose) ratio, HMF (hydroxymethyl furfural), and C12/C13 ratio of honeys were measured. The average values for the tested honeys were 19.9% of moisture contents, 0.12% of ash, 68.4% of invert sugar, 5.7% of sucrose, 1.27 of F/G(fructose/glucose) ratio, 14.4 mg/kg of HMF, and -19.1 of C12/C13 ratio. A spectrophotometer, equipped with a single-beam scanning monochromator (NIR Systems, Model 6500, USA) and a horizontal setup module, was used to collect reflectance data from honey. The reflectance spectra were measured in wavelength ranges of 400∼2,498 nm. with 2 nm of interval. Thirty-two repetitive scans were averaged, transformed to log(1/Reflectance), and then were stored in a microcomputer file, forming one spectrum per measurement. A sample cell and reflectance plate were made to hold honey samples constantly. Spectra of honey samples were divided into a calibration set and a validation set. The calibration set was used during model development, and the validation set was used to predict quality parameters from unknown spectra. The PLS(Partial Least Square) models were developed to predict the quality parameters of honeys. The first and the second derivatives of raw spectra were also used to develop the models with proper smoothing gap. The MSC (multiplicative scatter correction) and the SNV & Dtr.(standard normal variate and detranding) preprocessing were applied to all spectra to minimize sample-to-sample light scatter differences. The PLS models showed good relationships between predicted and measured quality parameters of honeys in the wavelength range of 1100∼2200 nm. However, the PLS analysis was not good enough to predict HMF of honeys.

  • PDF

Development of Structure Analysis Program for Jointed Concrete Pavement Applying Load Discretization Algorithm (하중변환 알고리듬을 적용한 줄눈 콘크리트 포장해석 프로그램 개발)

  • Yun, Tae-Young;Kim, Ji-Won;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.5 no.4 s.18
    • /
    • pp.1-11
    • /
    • 2003
  • Recently, the new pavement design method considering Korean environment and the specification for improving performance of pavement are being developed in Korea. The Jointed Concrete Pavement Program Applying Load Discretization Algorithm (called HEART-JCP) is one of the results of Korea Pavement Research Project in Korea. HEART-JCP program is developed to analyze various loading condition using the load discretization algorithm without mesh refinement. In addition, it can be modified easily into multi-purpose concrete pavement nidyses program because of the modularized structure characteristic of HEART-JCP. The program consists of basic program part and load discretization part. In basic program part, the displacement and stress are computed in the concrete slab, sub-layer, and dowel bar, which are modeled with plate/shell element, spring element and beam element. In load discretization program part, load discretization algorithm that was used for the continuum solid element is modified to analyze the model with plate and shell element. The program can analyze the distributed load, concentrated load, thermal load and body load using load discretization algorithm. From the result of verification and sensitivity study, it was known that the loading position, the magnitude of load, and the thickness of slab were the major factors of concrete pavement behavior as expected. Since the result of the model developed is similar to the results of Westergaard solution and ILLISLAB, the program can be used to estimate the behavior of jointed concrete pavement reasonably.

  • PDF