• 제목/요약/키워드: Beam-column method

검색결과 492건 처리시간 0.021초

강구조 특수모멘트골조의 보 소성변형요구량 평가 (Estimation of Beam Plastic Rotation Demands for Special Moment-Resisting Steel Frames)

  • 엄태성
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.405-415
    • /
    • 2011
  • 건축물의 안전한 내진설계를 위해서는 층간변위비 뿐만 아니라 부재에 요구되는 소성변형을 평가하여야 한다. 본 연구에서는 복잡한 비선형해석 없이 탄성해석을 사용하여 강기둥-약보로 설계된 철골 특수모멘트골조의 보에 요구되는 소성변형을 평가하는 간편한 방법을 개발하였다. 개발한 방법은 탄성해석 결과를 근거로 모멘트 재분배, 기둥 단면치수 및 보 소성힌지 이동, 패널존 변형, 중력하중, 변형경화 거동 등을 고려하여 보의 소성변형각을 직접적으로 예측한다. 또한 가새골조 또는 코어벽 등 횡력 저항구조와 모멘트골조의 상호 작용인 로킹 효과 고려한다. 검증을 위하여 강기둥-약보로 설계된 6층 특수모멘트골조에 제안된 방법을 적용하여 보의 소성변형각을 예측하고, 그 결과를 비선형 해석 결과와 비교하였다. 검증 결과, 제안된 방법은 설계 변수에 따른 보의 소성변형각을 합리적으로 예측하는 것으로 나타났다.

Cyclic testing of weak-axis column-tree connections with formation of plastic hinge at beam splice

  • Oh, Keunyeong;Chen, Liuyi;Hong, Sungbin;Yang, Yang;Lee, Kangmin
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1039-1054
    • /
    • 2015
  • The purpose of this study was to evaluate the seismic performance of weak-axis column-tree type connections used in steel moment frames. These connections are composed of a shop-welded and fieldbolted steel structure and can improve welding quality. On this basis, column-tree type connections are widely used in steel moment resisting frames in Korea and Japan. In this study, splices designed with a semirigid concept regarding the seismic performance of column-tree connections were experimentally evaluated. The structures can absorb energy in an inelastic state rather than the elastic state of the structures by the capacity design method. For this reason, the plastic hinge might be located at the splice connection at the weak-axis column-tree connection by reducing the splice plate thickness. The main variable was the distance from the edge of the column flange to the beam splice. CTY series specimens having column-tree connections with splice length of 600 mm and 900 mm were designed, respectively. For comparison with two specimens with the main variable, a base specimen with a weak-axis column-tree connection was fabricated and tested. The test results of three full-scale test specimens showed that the CTY series specimens successfully developed ductile behavior without brittle fracture until 5% story drift ratio. Although the base specimen reached a 5% story drift ratio, brittle fracture was detected at the backing bar near the beam-to-column connection. Comparing the energy dissipation capacity for each specimen, the CTY series specimens dissipated more energy than the base specimen.

Geometrically nonlinear analysis of plane frames composed of flexibly connected members

  • Gorgun, H.
    • Structural Engineering and Mechanics
    • /
    • 제45권3호
    • /
    • pp.277-309
    • /
    • 2013
  • Beam-to-column connections behaviour plays an important role in the analysis and design of steel and precast concrete structures. The paper presents a computer-based method for geometrically nonlinear frames with semi-rigid beam-to-column connections. The analytical procedure employs modified stability functions to model the effect of axial force on the stiffness of members. The member modified stiffness matrix, and the modified fixed end forces for various loads were found. The linear and nonlinear analyses were applied for two planar steel structures. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.

합성보-철골기둥 접합부의 내진전단설계 (Seismic Shear Design of Composite Beam-Steel Column Joints)

  • 이승준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.45-51
    • /
    • 1992
  • Trilinear analytical models representing the behavior of composite beam-steel column joints and seismic shear design method for the joints are presented. Emphasis is placed on the effect of the concrete slab on the behavior of the joints. To validate the analytical models, Comparisons with the experimental results are made. Application of the proposed method to seismic shear design of joints improves the seismic resistance of the steel frame with composite slab.

  • PDF

A new statistical approach for joint shear strength determination of RC beam-column connections subjected to lateral earthquake loading

  • Kim, Jaehong;LaFavet, James M.;Song, Junho
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.439-456
    • /
    • 2007
  • Reinforced concrete (RC) joint shear strength models are constructed using an experimental database in conjunction with a Bayesian parameter estimation method. The experimental database consists of RC beam-column connection test subassemblies that maintained proper confinement within the joint panel. All included test subassemblies were subjected to quasi-static cyclic lateral loading and eventually experienced joint shear failure (either in conjunction with or without yielding of beam reinforcement); subassemblies with out-of-plane members and/or eccentricity between the beam(s) and the column are not included in this study. Three types of joint shear strength models are developed. The first model considers all possible influence parameters on joint shear strength. The second model contains those parameters left after a step-wise process that systematically identifies and removes the least important parameters affecting RC joint shear strength. The third model simplifies the second model for convenient application in practical design. All three models are unbiased and show similar levels of scatter. Finally, the improved performance of the simplified model for design is identified by comparison with the current ACI 352R-02 RC joint shear strength model.

경사단부강판 보 이음을 갖는 강재 보-기둥 모멘트접합부의 내진실험 (Seismic Tests of Steel Beam-to-column Moment Connections with Inclined End-plate Beam Splice)

  • 임종진;김동관;이상현;박철수;이창남;엄태성
    • 한국강구조학회 논문집
    • /
    • 제29권2호
    • /
    • pp.181-192
    • /
    • 2017
  • 최근 경사단부강판과 고장력 볼트를 이용한 보 이음(Inclined end-plate beam splice) 공법이 개발되었다. 단부강판은 브래킷 단부에 용접되고 연결보는 고장력 볼트를 통해 이음시킨다. 기둥면에는 브래킷이 용접되고, 브래킷과 연결보 단부에 각각 경사단부강판과 고장력 볼트를 이용하여 이음 시킨다. 이 연구에서는 총 6개의 외부 보-기둥 모멘트접합부의 반복가력실험을 수행하였다. 실험변수는 단부강판 상세와 볼트 배열 상세이다. 모든 실험체는 AISC Design Guide 4에 따라 단부강판 및 볼트에 의한 모멘트 저항성능이 보 이음부 요구모멘트보다 크도록 설계되었다. 실험결과, 확장된 단부강판(Extended end-plate)을 사용한 보이음부의 경우 이음부 단부강판의 지레작용 및 볼트의 취성 파단 없이 중앙 보 모멘트가 단부 브래킷으로 효과적으로 전달되었다. 하지만, 보-기둥 접합부의 변형능력은 기둥면 보 플랜지 용접부의 취성파단으로 제한적이었다. 실험결과를 바탕으로, 기울어진 단부강판 이음부를 갖는 보-기둥 모멘트접합부의 내진설계를 위한 개선사항을 제안하였다.

철근콘크리트 모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법 (Optimal Seismic Design Method Based on Genetic Algorithms to Induce a Beam-Hinge Mechanism in Reinforced Concrete Moment Frames)

  • 최세운
    • 한국전산구조공학회논문집
    • /
    • 제36권6호
    • /
    • pp.399-405
    • /
    • 2023
  • 본 연구에서는 철근콘크리트 모멘트골조의 보-힌지 붕괴 기구를 유도하기 위한 유전자알고리즘 기반의 최적내진설계기법을 제시한다. 제안하는 기법은 두 가지의 목적함수을 사용한다. 첫 번째는 구조물의 비용을 최소화하는 것이고, 두 번째는 구조물의 에너지소산능력을 최대화하는 것이다. 제약조건은 기둥과 보의 강도조건, 기둥-보 휨강도비 최소 조건, 기둥의 소성힌지 발생 방지조건 등이 사용된다. 부재의 강도 평가를 위해 선형정적해석이 수행되고, 에너지소산능력과 소성힌지 발생여부를 평가하기 위해 비선형정적해석이 수행된다. 제안하는 기법은 4층 예제 구조물에 적용되었으며, 보-힌지 붕괴 기구를 유도하는 설계안이 얻어지는 것을 확인하였다. 획득된 설계안의 기둥-보 휨강도비를 분석한 결과, 그 값은 기존 내진 기준에서 제시하는 값보다 큰 것으로 나타났다. 보-힌지 붕괴 모드를 유도하기 위해서는 보다 더 강화된 전략이 필요하다.

Experimental study on seismic behavior of RC beam-column joints retrofitted using prestressed steel strips

  • Yang, Yong;Chen, Yang;Chen, Zhan;Wang, Niannian;Yu, Yunlong
    • Earthquakes and Structures
    • /
    • 제15권5호
    • /
    • pp.499-511
    • /
    • 2018
  • This paper aims to investigate the seismic performance of the prestressed steel strips retrofitted RC beam-column joints. Two series of joint specimens were conducted under compression load and reversed cyclic loading through quasi-static tests. Based on the test results, the seismic behavior of the strengthened joints specimens in terms of the failure modes, hysteresis response, bearing capacity, ductility, stiffness degradation, energy dissipation performance and damage level were focused. Moreover, the effects of the amount of the prestressed steel strips and the axial compression ratio on seismic performance of retrofitted specimens were analyzed. It was shown that the prestressed steel strips retrofitting method could significantly improve the seismic behavior of the RC joint because of the large confinement provided by prestressed steel strips in beam-column joints. The decrease of the spacing and the increase of the layer number of the prestressed steel strips could result in a better seismic performance of the retrofitted joint specimens. Moreover, increasing the axial compression ration could enhance the peak load, stiffness and the energy performance of the joint specimens. Furthermore, by comparison with the specimens reinforced with CFRP sheets, the specimens reinforced with prestressed steel strips was slightly better in seismic performance and cost-saving in material and labor. Therefore, this prestressed steel strips retrofitting method is quite helpful to enhance the seismic behavior of the RC beam-column joints with reducing the cost and engineering time.

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong;Vu, Quang-Viet;Truong, Viet-Hung;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.497-521
    • /
    • 2021
  • In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.

An innovative experimental method to upgrade performance of external weak RC joints using fused steel prop plus sheets

  • Kheyroddin, Ali;Khalili, Ali;Emami, Ebrahim;Sharbatdar, Mohammad K.
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.443-460
    • /
    • 2016
  • In this paper, the efficiency and effectiveness of two strengthening methods for upgrading behavior of the two external weak reinforced concrete (RC) beam-column joints were experimentally investigated under cyclic loading. Since two deficient external RC joints with reduced beam height and low strength concrete were strengthened using one-way steel prop and curbs with and without steel revival sheets on the beam. The cyclic performance of these strengthened specimens were compared with two another control external RC beam-column joints, one the standard RC joint that had not two mentioned deficiencies and another had both. Therefore, four half-scale RC joints were tested under cyclic loading.The experimental results showed that these innovative strengthening methods (RC joint with revival sheet specially) surmounted the deficiencies of weak RC joints and upgraded their performance and bearing capacity, stiffness degradation, energy absorption, up to those of standard RC joint. Also, results exhibited that the prop at joint acted as a fuse element due to adding steel revival sheets on the RC beam and showed better behavior than that of the specimen without steel revival sheets. In other words by stiffening of beam, the prop collected all damages due to cyclic loading at itself and acted as the first line of defense and prevented from sever damages at RC joint.