• Title/Summary/Keyword: Beam source

Search Result 1,019, Processing Time 0.033 seconds

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy

  • Kim, Min-Tae;Lee, Hae-Kag;Heo, Yeong-Cheol;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • In this study, for 6-20 MeV electron beam energy occurring in a linear accelerator, the authors attempted to investigate the relation between the effective source-skin distance and the relation between the radiation field and the effective source-skin distance. The equipment used included a 6-20 MeV electron beam from a linear accelerator, and the distance was measured by a ionization chamber targeting the solid phantom. The measurement method for the effective source-skin distance according to the size of the radiation field changes the source-skin distance (100, 105, 110, 115 cm) for the electron beam energy (6, 9, 12, 16, 20 MeV). The effective source-skin distance was measured using the method proposed by Faiz Khan, measuring the dose according to each radiation field ($6{\times}6$, $10{\times}10$, $15{\times}150$, $20{\times}20cm^2$) at the maximum dose depth (1.3, 2.05, 2.7, 2.45, 1.8 cm, respectively) of each energy. In addition, the effective source-skin distance when cut-out blocks ($6{\times}6$, $10{\times}10$, $15{\times}15cm^2$) were used and the effective source-skin distance when they were not used, was measured and compared. The research results showed that the effective source-skin distance was increased according to the increase of the radiation field at the same amount of energy. In addition, the minimum distance was 60.4 cm when the 6 MeV electron beams were used with $6{\times}6$ cut-out blocks and the maximum distance was 87.2 cm when the 6 MeV electron beams were used with $20{\times}20$ cut-out blocks; thus, the largest difference between both of these was 26.8 cm. When comparing the before and after the using the $6{\times}6$ cut-out block, the difference between both was 8.2 cm in 6 MeV electron beam energy and was 2.1 cm in 20 MeV. Thus, the results showed that the difference was reduced according to an increase in the energy. In addition, in the comparative experiments performed by changing the size of the cut-out block at 6 MeV, the results showed that the source-skin distance was 8.2 cm when the size of the cut-out block was $6{\times}6$, 2.5 cm when the size of the cut-out block was $10{\times}10$, and 21.4 cm when the size of the cut-out block $15{\times}15$. In conclusion, it is recommended that the actual measurement is used for each energy and radiation field in the clinical dose measurement and for the measurement of the effective source-skin distance using cut-out blocks.

Characterization of Cold Hollow Cathode Ion Source by Modification of Electrode Structure (전극 구조 변화에 따른 Cold Hollow Cathode Ion Source의 특성 변화)

  • Seok, Jin-Woo;Chernysh, V.S.;Han, Sung;Beag, Young-Hwoan;Koh, Seok-Keun;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.967-972
    • /
    • 2003
  • The inner-diameter 5 cm cold hollow cathode ion source was designed for the high current density and the homogeneous beam profile of ion beam. The ion source consisted of a cylindrical cathode, a generation part of magnetic field, a plasma chamber, convex type ion optic system with two grid electrode, and DC power supply system. The cold hollow cathode ion sources were classified into standard type (I), electron output electrode modified type (II). The operation of the ion source was done with discharge current, ion beam potential and argon gas flow rate. The modification of electron output electrode resulted in uniform plasma generation and uniform area of ion beam was extended from 5 cm to 20 cm. Improved ion source was evaluated with beam uniformity, ion current, team extraction efficiency, and ionization efficiency.

Discharge Characteristics of a KSTAR NBI Ion Source

  • Chang Doo-Hee;Oh Byung-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.226-233
    • /
    • 2003
  • The discharge characteristics of a prototype ion source was investigated, which was developed and upgraded for the NBI (Neutral Beam Injection) heating system of KSTAR (Korea Superconducting Tokamak Advanced Research). The ion source was designed for the arc discharge of magnetic bucket chamber with multi-pole cusp fields. The ion source was discharged by the emission-limited mode with the control of filament heating voltage. The maximum ion density was 4 times larger than the previous discharge controlled by a space-charge-limited mode with fully heated filament. The plasma (ion) density and arc current were proportional to the filament voltage, but the discharge efficiency was inversely proportional to the operating pressure of hydrogen gas. The maximum ion density and arc current were obtained with constant arc voltage ($80{\sim}100V$), as $8{\times}10^{11}cm^{-3}$ and 1200 A, respectively. The estimated maximum beam current was about 35 A, extracted by the accelerating voltage of 80kV.

Discharge Characteristics of Large-Area High-Power RF Ion Source for Neutral Beam Injector on Fusion Devices

  • Chang, Doo-Hee;Park, Min;Jeong, Seung Ho;Kim, Tae-Seong;Lee, Kwang Won;In, Sang Ryul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.241.1-241.1
    • /
    • 2014
  • The large-area high-power radio-frequency (RF) driven ion sources based on the negative hydrogen (deuterium) ion beam extraction are the major components of neutral beam injection (NBI) systems in future large-scale fusion devices such as an ITER and DEMO. Positive hydrogen (deuterium) RF ion sources were the major components of the second NBI system on ASDEX-U tokamak. A test large-area high-power RF ion source (LAHP-RaFIS) has been developed for steady-state operation at the Korea Atomic Energy Research Institute (KAERI) to extract the positive ions, which can be used for the NBI heating and current drive systems in the present fusion devices, and to extract the negative ions for negative ion-based plasma heating and for future fusion devices such as a Fusion Neutron Source and Korea-DEMO. The test RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of RF discharge. The characteristics and uniformities of the plasma parameter in the RF ion source were measured at the lowest area of the expansion bucket using two RF-compensated electrostatic probes along the direction of the short- and long-dimensions of the expansion region. The plasma parameters in the expansion region were characterized by the variation of loaded RF power (voltage) and filling gas pressure.

  • PDF

Analysis of Laser Heat Distribution in Al-Cu Welding (알루미늄 구리 용접에서 레이저 열원 분포 분석)

  • Choi, Hae Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • A computer simulation was performed to study the effectiveness of temperature on the type of laser heat source in the context of the heterogeneous welding of aluminum and copper materials. Three different types of heat sources were used in the computer simulation: 1) Single Beam Straight Scan, 2) Single Beam Wobble Scan, and 3) Dual Beam Straight Scan. Among these sources, dual beam straight scan was found to be the most effective from the viewpoint of heat source control. Because the difference between the melting temperatures of copper and aluminum is approximately 400℃, a clear separation of heating temperature was required, and the dual beam straight scan provided superior controllability in this regard. When using the dual beam, the temperature of the 90:10 split was considerably easier to control than that of the 50:50 split. The optimal offset was calculated to be 4 mm off to the copper side, where the melting temperature and thermal conductivity were higher. In this manner, computer simulation was effectively used for determining the optimal laser beam hear source control without performing an actual laser welding experiment.

An Epithermal Neutron Beam Design for BNCT Using $^2H(d,n)^3He$ Reaction

  • Han, Chi-Young;Kim, Jong-Kyung;Chung, Kyu-Sun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.512-521
    • /
    • 1999
  • A feasibility study was performed to design an epithermal neutron beam for BNCT using the neutron of 2.45 MeV on the average produced from $^2H(d,n)^3$He reaction induced by plasma focus in the z-pinch instead of the conventional accelerator-based $^3H(d, n)^4$He neutron generator. Flux and spectrum were analyzed to use these neutrons as the neutron source for BNCT. Neutronic characteristics of several candidate materials in this neutron source were investigated Using MCNP Code, and $^7LiF$ ; 40%Al + 60%$AIF_3$, and Pb Were determined as moderator, filter, and reflector in an epithermal neutron beam design for BNCT, respectively. The skin-skull-brain ellipsoidal phantom, which consists of homogeneous regions of skin-, bone-, or brain-equivalent material, was used in order to assess the dosimetric effect in brain. An epithermal neutron beam design for BNCT was proposed by the repeated work with MCNP runs, and the dosimetric properties (AD, AR, ADDR, and Dose Components) calculated within the phantom showed that the neutron beam designed in this work is effective in tumor therapy. If the neutron source flux is high enough using the z-pinch plasma, BNCT using the neutron source produced from $^2H(d,n)^3$He reaction will be very feasible.

  • PDF

THE NEW TYPE BROAD BEAM ION SOURCES AND APPLICATIONS

  • You, D.W.;Feng, Y.C.;Wang, Y.;Kuang, Y.Z.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.131-138
    • /
    • 1995
  • The broad beam ion sources of hot filament plasma type have widely used for modifications of materials and thin films, and the new type intensive current broad beam metal ion source including reactive gaseous ion beams is needed for preparing the hard coating films such as DLC, $\beta-C_3N_4$ Carbides, Nitrides, Borides etc. Now a electorn beam evaporation(EBE) broad beam metal ion source has been developed for this purpose in our lab. CN film has been formed by the EBE ion source. Study of the CN film shows that it has high hardness(HK=5800kgf/$\textrm {mm}^2$)and good adhesion. This method can widely changes the ratio of C/N atom's concentrations from 0.14 to 0.6 and has high coating rate. The low energy pocket ion source which was specially designed for surface texturing of medical silicon rubber was also developed. It has high efficiency and large uniform working zone. Both nature texturing and mesh masked texturing of silicon rubbers were performed. The biocompatibility was tested by culture of monocytes, and the results showed improved biocompatibility for the treated silicon rubbers. In addition, the TiB2 film synthesized by IBED is being studied recently in our lab. In this paper, the results which include the hardness, thickness of the films and the AES, XRD analysis as well as the tests of the oxidation of high temperature and erosion will be presented.

  • PDF

A Simulation Study of a Chopping System for Extracting a Pulsed Beam from a Cyclotron

  • Kim, Jae-Hong;Hong, Seong-Gwang;Kim, Mi-Jeong;Kim, Seong-Jun;Kim, Myeong-Jin;Kim, Do-Gyun;Yun, Jong-Cheol;Kim, Jong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.537-537
    • /
    • 2013
  • Cyclotron-accelerated ion beams are used for various researches, such as nuclear physics, nuclear chemistry, biotechnology, and material sciences including radio-isotope production. Recently considerable applications are asked to the cyclotron development undertaken to meet user requirements of various ions'energies, intensities, and their pulsed beams. For instance, a cocktail beam acceleration technique rapidly changing the ion species and energies was developed to irradiating integrated circuit chips. Also a chopping system in a cyclotron injection line is considered for producing a pulsed ion beam with a relatively long period compared with that generated by the resonance frequency. For the research in neutron time-of-flight measurement, a single-pulsed beam with a repetition interval of the order of mili-seconds or longer is necessary to have a good resolution and to remove background events. In this paper a feasibility of pulsed beam with an external ion source is simulated by adopting a combination system of a chopper accompanying with a bunching stage in the injection line and an additional chopper after the exit of the cyclotron in order to produce beam pulses with a range of $1{\mu}s{\sim}1ms$ periods from a resonance RF cycle. The pulseperiod will be adjusted by chopping the number of beam bunches from the injected pulses in the injection line. However, the longer pulses will have reduced number of beam pulses and sacrificed beam currents. Because the beam users need an intense single pulsed beam, a careful tuning of the acceleration phase and a high-intense external ion source are necessary to achieve an intense single-pulsed beam from the cyclotron. It is essential to strictly match the acceleration phase of injected beams in the central region of the cyclotron to improve its efficiency. An effect of space charge at each pulse from the ion source will be also considered.

  • PDF

Experimental and simulation study on the backstreaming positive ions on the quarter-size negative ion source for CRAFT NNBI test facility

  • Yongjian Xu;Yuwen Yang;Jianglong Wei;Ling Yu;Wen Deng;Rixin Wang;Yuming Gu;Chundong Hu;Yahong Xie
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.546-551
    • /
    • 2024
  • As an effective methods of plasma heating, neutral beam injection (NBI) systems based on negative hydrogen ion sources will be utilized in future magnetic-confinement nuclear fusion experiments. Because of the collisions between the fast negative ions and the neutral background gas, the positive ions are inevitable created in the acceleration region in the negative NBI system. These positive ions are accelerated back into the ion source and become high energy backstreaming ions. In order to explore the characters of backstreaming ions, the track and power deposition of backstreaming H+ beam is estimated using the experimental and simulation methods at NNBI test facility. Results show that the flux of backstreaming positive ions is 1.93 % of that of negative ion extraction from ion source, and the magnet filed in the beam source has an effect on the backstreaming positive ions propagation.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF