• Title/Summary/Keyword: Beam data

Search Result 1,978, Processing Time 0.118 seconds

Photoelastic Stress Analysis of Fixed Partial Dentures (가공의치(架工義齒)에 작용(作用)하는 Stress에 관(關)한 광탄성학적(光彈性學的) 분석(分析))

  • Cho, Won-Haeng
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.15-35
    • /
    • 1980
  • The purpose of this study was to investigate stresses in the various components of fixed partial dentures restoring the posterior teeth of the lower jaw, and to measure quantitatively the effects of certain modifications in structural design on the stresses in the restorations using two-dimensional photoelasticity. Two-dimensional photoelastic methods were used in this study. Several models of fixed partial dentures were constructed. Shoulder less margins and anatomic occlusal reduction were incorporated in Model 1. Rounded shoulders and flat occlusal reduction were incorporated in Model 2, while Model 3 was a cantilever fixed partial denture. Other similar fixed partial dentures were constructed with V and U notches deliverately included in the region of the fixed joints for comparative reasons. The birefringent materials used in this study were PSM-1 and PSM-5 in standard sheets. PSM-1 was used for constructing the substructure, and PSM-5 was used in making the components of the fixed partial dentures. The two materials were used in the construction of composite photoelastic models. Improved artificial stone was used to represent dental cement in luting the composite photoelastic models. Static loading procedures were used at preplanned sites to represent occlusal loads in the mouth. 35 mm color and B/W film were used to record isochromatics in accordance with photoelastic procedures. Data reduction was performed using the grid method, which helped in, the mathematical integration procedure (Shear difference method) to separate the principal stresses. The results were as follows. 1. Fixed partial dentures do not function in bending as a symmetrical beam. Alternate areas of tension and compression were demonstrated when multiple contact loading was used. 2. The weakest part in posterior fixed partial dentures is the fixed joint. 3. (1) Models I and modified Model I were loaded on the pontic using a 50 pound vertical static load. The shear stress near the posterior fixed joint in Model 1 (U notches) was+129.4 p.s.i., and at the same fixed joint in modified Model 1 (V notches) was+239.4 p.s.i. The concentration of stress in fixed joint was reduced by 50% when U notches replaced the V notches. (2) Modified Model 2 was loaded using a multiple contact loader at a total load of 125 pounds. The difference between the principal stresses (${\sigma}_1-{\sigma}_2$), shear stress, at the V notches was+600 p.s.i., and at the U notches was+3l7 p.s.i. The shear stress was reduced by 50% when U notches replaced the V notches. V-grooves at the fixed joints should be avoided, and should be replaced by regular shaped U-grooves. 4. Cantilever fixed partial dentures had much higher stresses at the fixed joint than fixed partial dentures that were attached at both ends.

  • PDF

KrF 엑시머 레이저를 이용한 웨이퍼 스텝퍼의 제작 및 성능분석

  • 이종현;최부연;김도훈;장원익;이용일;이진효
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.15-21
    • /
    • 1993
  • This paper describes the design and development of a KrF excimer laser stepper and discusses the detailed system parameters and characterization data obtained from the performance test. We have developed a deep UV step-and-repeat system, operating at 248 nm, by retrofitting a commercial modules such as KrF excimer laser, precision wafer stage and fused silica illumination and 5X projection optics of numerical aperture 0.42. What we have developed, to the basic structure, are wafer alignment optics, reticle alignment system, autofocusing/leveling mechanisms and environment chamber. Finally, all these subsystem were integrated under the control of microprocessor-based controllers and computer. The wafer alignment system comprises the OFF-AXIS and the TTL alignment. The OFF-AXIS alignment system was realized with two kinds of optics. One is the magnification system with the image processing technique and the other is He-Ne laser diffraction type system using the alignment grating on the wafer. 'The TTL alignment system employs a dual beam inteferometric method, which takes advantages of higher diffraction efficiency compared with other TTL type alignment systems. As the results, alignment accuracy for OFF-AXIS and TTL alignment system were obtained within 0.1 $\mu\textrm{m}$/ 3 $\sigma$ for the various substrate on the wafers. The wafer focusing and leveling system is modified version of the conventional systems using position sensitive detectors (PSD). This type of detection method showed focusing and leveling accuracies of about $\pm$ 0.1 $\mu\textrm{m}$ and $\pm$ 0.5 arcsec, respectively. From the CD measurement, we obtained 0.4 $\mu\textrm{m}$ resolution features over the full field with routine use, and 0.3 $\mu\textrm{m}$ resolution was attainable under more strict conditions.

  • PDF

Flexural Analysis of RC Beam Considering Autogenous Shrinkage Model (자기수축 모델을 고려한 철근콘크리트 보의 휨 거동 해석)

  • Yoo Sung-Won;Soh Yang-Sub;Cho Min-Jung;Koh Kyung-Taek;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.621-628
    • /
    • 2005
  • Recently, it is noticed that autogenous shrinkage of high-performance concrete causes early crack in high performance concrete structures. The purpose of the present study is to derive a realistic equation to estimate the autogenous shrinkage of high performance concrete and to apply to structural analysis. For this purpose, several series of concrete specimens have been tested. When water-binder ratio is fixed to $30\%$, major test variables were the type and contents of mineral admixture. The autogenous shrinkage of HPC with fly ash slightly decreased than that of OPC concrete, but the use of blast furnace slag increased with the autogenous shrinkage. A prediction equation to estimate the autogenous shrinkage of HPC with mineral admixture was derived and proposed in this study. The proposed equation show reasonably good correlation with test data on autogenous shrinkage of HPC with mineral admixture. The finite element program developed in this study provides the useful tool for the flexural analysis including the autogenous shrinkage model. By this program, we know that the tensile stress considering the autogenous shrinkage of reinforced concrete structures increase $20\~27\%$ than that not considering.

Power Allocation Scheme For Mobile Communication Systems Using Directional Transmission (방향성 전송을 사용하는 이동통신 시스템을 고려한 파워 할당 방안)

  • Lee, Woongsup;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2621-2627
    • /
    • 2014
  • Directional transmission is one of key technology to solve the utmost problem that current mobile communication system faces, which is explosively increasing data traffic, since directional transmission can maximize the throughput of mobile communication systems. In this work, we consider power allocation scheme for mobile communication system which utilizing directional transmission. Especially, we consider the case in which multiple users in the same sector of base station, are served at the same time by utilizing directional transmission. For this scenarios, we consider equal power allocation scheme, Water-filling based scheme and inverse SNR scheme. Moreover, we propose beam power allocation scheme whose objective is to maximize overall system throughput by taking into account interference between different directional transmissions. Moreover, we have examined the spectral efficiency and Jain's fairness index of various power allocation schemes for directional transmission by using system level simulator that has been developed in our previous work. Through simulations, it has been verified that the proposed power allocation scheme can improve the spectral efficiency of the system by 28%.

Diagnosis of Submerged Fixed Bioreactor using Radioisotope Tracer (방사성동위원소 추적자를 이용한 침적형 고정 미생물 반응조 진단)

  • Jung, Sunghee;Jin, Joonha;Lee, Myunjoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1149-1158
    • /
    • 2000
  • A radioisotope tracer experiment was carried out in the submerged fixed bioreactor of a dye wastewater treatment facility to evaluate the flow behaviors in the 6 compartments of the reactor and to find any possible factors which may affect to the efficiency of the process. Approximately 20mCi of $^{131}I$ was injected into the system as a tracer and 8 radiation detectors were placed in the 6 compartments and at the inlet and the outlet of the system to measure the change of the tracer concentration with time. Using the Perfect Mixers in Series Model the measured data were analyzed to calculate the mean residence time and the characteristic parameters of the flow in the system. The mean residence time of the system was calculated as 17 hours which is 76% of the designed MRT(22.3hr). Among the 6 compartments, the first compartment doesn't show the characteristic of perfect mixer, whereas, the other 5 compartments are working as perfect mixers. The output response of the first compartment is fit well with the simulated output of a model which consists of a perfect mixer with an exchange volume. It indicates that a quarter of the tank volume is working as a dead volume or an exchange volume. From the measured residence time distributions in each compartment, the appropriate sampling times after the change of operational condition of the electron beam accelerator were evaluated.

  • PDF

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Creep Behaviours of 9% Ni Alloy (Ni 합금강의 크리프 거동)

  • Hwang, Kyung-Choong;Kim, Jong-Bae;Kang, Sung Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.89-94
    • /
    • 2008
  • Purpose: To observe the high temperature creep test and the fracture surface of the samples of 9% Ni alloy steel generally used for all kinds of mahine parts and predict the durability of that by determining a constant of C with a Larson-Miller variable. Methods: The equipment of this test was made into lever-beam style designed by Andrade and F. Garofalo et al.. The condition of creep test was set under 16 kinds of conditions after fixing 4 kinds of temperature condition and 4 kinds of stress condition to check how it effects the samples. Results: The temperature of creep test was increased, the stress index (n) of creep deformation was gradually decreased from 3.97 to 3.55. The activation energy of creep deformation was decreased from 90.39 to 83.64 kcal/mol when the stress was increased. A constant of C value by calculation of larson-Miller variable was about 22 and if temperature for use is suggested, the durability could be calculated. Conclusions: By analyzing the fracture phenomenon and suggesting the observation result of the fracture surface of the samples and creep test of 9% Ni alloy steel, the basic design data for the practical use of accessories in the field of equipment could be constructed and used to predict the durability of the equipment.

  • PDF

Comparison of CH4 Emission by Open-path and Closed Chamber Methods in the Paddy Rice Fields (벼논에서 open-path와 closed chamber 방법 간 메탄 배출량 비교)

  • Jeong, Hyun-cheol;Choi, Eun-jung;Kim, Gun-yeob;Lee, Sun-il;Lee, Jong-sik
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.507-516
    • /
    • 2018
  • The closed chamber method, which is one of the most commonly used method for measuring greenhouse gases produced in rice paddy fields, has limitations in measuring dynamic $CH_4$ flux with spatio-temporal constrains. In order to deal with the limitation of the closed chamber method, some studies based on open-path of eddy covariance method have been actively conducted recently. The aim of this study was to compare the $CH_4$ fluxes measured by open-path and closed chamber method in the paddy rice fields. The open-path, one of the gas ($CO_2$, $CH_4$ etc.) analysis methods, is technology where a laser beam is emitted from the source passes through the open cell, reflecting multiple times from the two mirrors, and then detecting. The $CH_4$ emission patterns by these two methods during rice cultivation season were similar, but the total $CH_4$ emission measured by open-path method were 31% less than of the amount measured by closed chamber. The reason for the difference in $CH_4$ emission was due to overestimation by closed chamber and underestimation by open-path. The closed chamber method can overestimate $CH_4$ emissions due to environmental changes caused by high temperature and light interruption by acrylic partition in chamber. On the other hand, the open-path method for eddy covariance can underestimate its emission because it assumes density fluctuations and horizontal homogeneous terrain negligible However, comparing $CH_4$ fluxes at the same sampling time (AM 10:30-11:00, 30-min fluxes) showed good agreements ($r^2=0.9064$). The open-path measurement technique is expected to be a good way to compensate for the disadvantage of the closed chamber method because it can monitor dynamic $CH_4$ fluctuation even if data loss is taken into account.

Evaluation of Structural Robustness of External Fuel Tank and Pylon for Military Aircraft under Random Vibration (랜덤진동에서 군용 항공기 외부연료탱크 및 파일런 구조 강건성 평가)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.777-783
    • /
    • 2021
  • Aircraft are affected by various vibrations during maneuvering. These vibrations may have a fatal effect on the survival of aircraft in some cases, so the safety of components applied to the aircraft should be proven against various vibrations through random vibration analysis. In this study, the structural robustness of an external fuel tank and pylon for military aircraft was evaluated under random vibration conditions using commercial software, MSC Random. In the random vibration analysis, a frequency response analysis was performed by imposing a unit load on the boundary condition point, and then excitation was performed with a PSD profile. In this process, the required mode data was extracted through a modal analysis method. In addition, the random vibration profile specified in the US Defense Environment Standard was applied as random vibration conditions, and the PSD profile given in units of G's was converted into units of gravitational acceleration. As a result of the numerical analysis, we evaluated the structural robustness of the external fuel tank and pylon by identifying the safety margins of beam elements, shell elements, and solid elements in a numerical model for random vibration in the x, y, and z directions.

A Study on the Design and Implementation of Multi-Disaster Drone System Using Deep Learning-Based Object Recognition and Optimal Path Planning (딥러닝 기반 객체 인식과 최적 경로 탐색을 통한 멀티 재난 드론 시스템 설계 및 구현에 대한 연구)

  • Kim, Jin-Hyeok;Lee, Tae-Hui;Han, Yamin;Byun, Heejung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2021
  • In recent years, human damage and loss of money due to various disasters such as typhoons, earthquakes, forest fires, landslides, and wars are steadily occurring, and a lot of manpower and funds are required to prevent and recover them. In this paper, we designed and developed a disaster drone system based on artificial intelligence in order to monitor these various disaster situations in advance and to quickly recognize and respond to disaster occurrence. In this study, multiple disaster drones are used in areas where it is difficult for humans to monitor, and each drone performs an efficient search with an optimal path by applying a deep learning-based optimal path algorithm. In addition, in order to solve the problem of insufficient battery capacity, which is a fundamental problem of drones, the optimal route of each drone is determined using Ant Colony Optimization (ACO) technology. In order to implement the proposed system, it was applied to a forest fire situation among various disaster situations, and a forest fire map was created based on the transmitted data, and a forest fire map was visually shown to the fire fighters dispatched by a drone equipped with a beam projector. In the proposed system, multiple drones can detect a disaster situation in a short time by simultaneously performing optimal path search and object recognition. Based on this research, it can be used to build disaster drone infrastructure, search for victims (sea, mountain, jungle), self-extinguishing fire using drones, and security drones.