• Title/Summary/Keyword: Beam Tilt

Search Result 114, Processing Time 0.025 seconds

Reactance Loaded Dipole Antennal Elements for Beam Tilting with Forced Resonance (리액턴스 장하 강제 공진형 지향성 틸트 다이폴 안테나 소자)

  • 김기채;권익승;서영석;박용완
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.278-285
    • /
    • 2000
  • This paper presents the basic characteristics of the beam tilting dipole antenna element in which one reactance element is used for the impedance matching at the feed point. The radiation pattern is tilted by the properly determined driving point position, and the loading reactance is used to obtain forced resonance without great changes in tilt angle. The numerical results demonstrate that the reactance element should be loaded in the region where the driving point is placed to obtain forced resonance of the antenna with little changes in beam tilt angle. In case the proposed forced resonant beam tilting antenna with $0.8\lambda$ length is driven at $0.2\lambda$ from the center, the main beam tilt angle o.5 57.7 degrees, the highest power gain of 8.6 dB are obtained.

  • PDF

Homeotropic Alignment Effect for Nematic Liquid Crystal on the $SiO_x$ Thin Film Layer by New Ion beam Exposure (새로운 이온빔을 이용한 $SiO_x$ 박막 표면의 액정 배향 효과)

  • Choi, Sung-Ho;Kim, Byoung-Yong;Han, Jin-Woo;Oh, Yong-Cheul;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.311-312
    • /
    • 2006
  • We studied homeotropic alignment effect for a nematic liquid crystal (NLC) on the $SiO_x$, thin film irradiated by the new ion beam method $SiO_x$ thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) and were treated by the DuoPIGatron ion source. A uniform liquid crystal alignment effect was achieved over 2100 eV ion beam energy. Tilt angle were about $90^{\circ}$ and were not affected by various ion beam energy.

  • PDF

Analysis of Tip/Tilt Compensation of Beam Wandering for Space Laser Communication

  • Seok-Min Song;Hyung-Chul Lim;Mansoo Choi;Yu Yi
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.237-245
    • /
    • 2023
  • Laser communication has been considered as a novel method for earth observation satellites with generation of high data volume. It offers faster data transmission speeds compared to conventional radio frequency (RF) communication due to the short wavelength and narrow beam divergence. However, laser beams are refracted due to atmospheric turbulence between the ground and the satellite. Refracted laser beams, upon reaching the receiver, result in angle-of-arrival (AoA) fluctuation, inducing image dancing and wavefront distortion. These phenomena hinder signal acquisition and lead to signal loss in the course of laser communication. So, precise alignment between the transmitter and receiver is essential to guarantee effective and reliable laser communication, which is achieved by pointing, acquisition, and tracking (PAT) system. In this study, we simulate the effectiveness of tip/tilt compensation for more efficient laser communication in the satellite-ground downlink. By compensating for low-order terms using tip/tilt mirror, we verify the alleviation of AoA fluctuations under both weak and strong atmospheric turbulence conditions. And the performance of tip/tilt correction is analyzed in terms of the AoA fluctuation and collected power on the detector.

The Tip-Tilt Correction System in AO System for Small Telescope

  • Yu, Hyungjun;Park, Yong-Sun;Lee, Bangweon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.219.2-219.2
    • /
    • 2012
  • We are developing Adaptive Optics (AO) system for 24 inch telescope at Seoul National University Observatory. It consists of the tip-tilt correction system and the residual wavefront error correction system with a deformable mirror and a wavefront sensor. We present the construction and performance measurements of the tip-tilt correction system. The tip-tilt component is the single largest contributor to wavefront error, especially for small telescope. The tip-tilt correction system consists of a quadrant photodiode, a tip-tilt mirror and a feed back loop. The collimated He-Ne laser beam is used for input light source and is artificially disturbed by air turbulence generated by a heat gun. Most of the turbulence is of low frequency less than 20 Hz, but extends to a few hundreds Hz. It is found that the closed loop system using proportional-integral-derivative (PID) control successfully corrects tip-tilt error at a rate as high as 300~400 Hz.

  • PDF

Design of 2-axis compensation servo system for angle multiplexing Holographic Data Storage (각 다중화 방식의 홀로그래픽 정보저장기기의 양방향틸트 보상시스템 설계)

  • Lim, Sung-Yong;Kim, Nak-Yeong;Han, Cho-Lok;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • Holographic Data Storage System, one of the next generation data storage devices, is a 2-dimensional page oriented memory system using volume holograms in writing and retrieving process. Recently photopolymer with disc type substrate was selected as a media for the Holographic Data Storage System. The disc tilt occurs when the media rotates and the external disturbance applies. The disc tilt causes the change of the angle between the reference beam and the media, the data cannot be retrieved with the right angle or other data page is retrieved. The tilt is generated in a 2-axis direction (tangential, radial). The tangential tilt direction is the same with the multiplexing plane, while the radial tilt direction is a perpendicular to the multiplexing plane. In this research we propose 2-axis tilt angle servo system. The tilt errors are measured by using external photo detector and the additional red laser. Then the tangential direction tilt is compensated by using the galvano mirror. Also the radial direction tilt is compensated by the rotating prism between the relay lens in the reference field. Finally we confirm the compensation results through the Signal to Noise Ratio(SNR) and Bit Error Rate(BER).

Analysis of Major Error Factors in Coherent Beam Combination: Phase, Tip Tilt, Polarization Angle, and Beam Quality

  • Jeongkyun Na;Byungho Kim;Changsu Jun;Yoonchan Jeong
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.406-415
    • /
    • 2024
  • The major error factors that degrade the efficiency of coherent beam combining (CBC) are numerically studied in a comprehensive manner, paying particular attention to phase, tip-tilt, polarization angle, and beam quality. The power in the bucket (PIB), normalized to the zero-error PIB, is used as a figure of merit to quantify the effect of each error factor. To maintain a normalized PIB greater than or equal to 95% in a 3-channel CBC configuration, the errors in phase, tip-tilt, and polarization angle should be less than 1.06 radians, 1.25 ㎛, and 1.06 radians respectively, when each of the three parameters is calculated independently with the other two set to zero. In a worst-case scenario of the composite errors within the parameter range for the independent-95%-normalized-PIB condition, the aggregate effect would reduce the normalized PIB to 83.8%. It is noteworthy that the PIB performances of a CBC system, depending on phase and polarization-angle errors, share the same characteristic feature. A statistical approach for each error factor is also introduced, to assess a CBC system with an extended number of channels. The impact of the laser's beam-quality factor M2 on the combining efficiency is also analyzed, based on a super-Gaussian beam. When M2 increases from 1 to 1.3, the normalized PIB is reduced by 2.6%, 11.8%, 12.8%, and 13.2% for a single-channel configuration and 3-, 7-, and 19-channel CBC configurations respectively. This comprehensive numerical study is expected to pave the way for advances in the evaluation and design of multichannel CBC systems and other related applications.

Liquid Crystal Orientation Properties on Homogeneous Polymer Surface by Various Alignment Methods

  • Kim, Young-Hwan;Lee, Kang-Min;Kim, Byoung-Yong;Oh, Byeong-Yun;Han, Jeong-Min;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.16-19
    • /
    • 2009
  • We have studied the liquid crystal alignment properties for various alignment methods on the homogeneous polyimide surface. Suitable liquid crystal alignment for one-side alignment cell on the polyimide surface by all alignment method was observed. Highly pre-tilt angle of the NLC for both-side rubbing cell was measured. But, low pre-tilt angle of the NLC for one-side ion beam and UV irradiation cell was observed. We consider that the pre-tilt angle of NLC for one-side ion beam and UV irradiation on the PI surface is lower than that of the PI surface with rubbing. Also, the suitable transmittance-voltage curves for the one-side rubbing TN-LCD on the PI surface with one-side UV irradiation were measured. Also, good response time characteristics of the one-side rubbing TN-LCD on the polyimide surface with one-side UV irradiation can be measured.

A wireless sensor with data-fusion algorithm for structural tilt measurement

  • Dan Li;Guangwei Zhang;Ziyang Su;Jian Zhang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.301-309
    • /
    • 2023
  • Tilt is a key indicator of structural safety. Real-time monitoring of tilt responses helps to evaluate structural condition, enable cost-effective maintenance, and enhance lifetime resilience. This paper presents a prototype wireless sensing system for structural tilt measurement. Long range (LoRa) technology is adopted by the sensing system to offer long-range wireless communication with low power consumption. The sensor integrates a gyroscope and an accelerometer as the sensing module. Although tilt can be estimated from the gyroscope or the accelerometer measurements, these estimates suffer from either drift issue or high noise. To address this challenging issue and obtain more reliable tilt results, two sensor fusion algorithms, the complementary filter and the Kalman filter, are investigated to fully exploit the advantages of both gyroscope and accelerometer measurements. Numerical simulation is carried out to validate and compare the sensor fusion algorithms. Laboratory experiment is conducted on a simply supported beam under moving vehicle load to further investigate the performance of the proposed wireless tilt sensing system.

2-axis deck mechanism for gap servo NFR system (근접장 시스템의 2 축 deck mechanism)

  • Jeong, Mi-Hyeon;Park, Hong-Soo;Lee, Seong-Hun;Seo, Jeong-Kyo;Choi, In-Ho;Min, Byung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1031-1032
    • /
    • 2007
  • Gap servo NF (Near Field) system is one of technologies to reduce beam spot size by increasing NA (Numerical Aperture) of lens. To achieve higher NA, SIL (Solid Immersion Lens) is used. In the case of using a blue LD (405 nm) as the light source the gap distance should be controlled under 100 nm with much tighter margin. Because of very small gap distance between SIL bottom and the surface of media, relative tilt tolerance is limited. In this paper, we presented 2-axis tilt mechanism for skew adjustment within small tilt margin.

  • PDF

Homeotropic Alignment Effect for Nematic Liquid Crystal on the SiOx Thin Film Layer by New Ion Beam Exposure

  • Han, Jeong-Min;Choi, Sung-Ho;Kim, Byoung-Yong;Han, Jin-Woo;Hwang, Jeoung-Yeon;Ok, Chul-Ho;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.293-296
    • /
    • 2006
  • We studied homeotropic alignment effect for a nematic liquid crystal (NLC) on the $SiO_{x}$ thin film irradiated by the new ion beam method. $SiO_{x}$ thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) and were treated by the DuoPIGatron ion source. A uniform liquid crystal alignment effect was achieved over 2100 eV ion beam energy. Tilt angle were about $90^{\circ}$ and were not affected by various ion beam energy.