• 제목/요약/키워드: Beam Direction Error

검색결과 95건 처리시간 0.023초

3D 위상 배열 안테나를 이용한 DoA 추정과 빔 형성시 각도 퍼짐에 의한 BER 성능 분석 (BER performance analysis by angle spreading effect in the DoA estimation and beam-forming using 3D phase array antenna)

  • 임승각;강대수
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.137-144
    • /
    • 2009
  • 본 논문은 GPS 신호를 기반으로하여 3D 배열 안테나를 사용한 전파의 도래각 (DoA : Direction of Arrival)을 추정한 후 빔 형성시의 재머 신호의 각도 퍼짐에의한 성능 비교에 관한 것이다. 배열 안테나를 사용하여 도래각을 추정한 후 공간 필터링에의해 도래 방향으로 빔을 형성하고, 다른 방향으로는 널링시킴으로서 수신 신호의 강도와 품질을 개선할 수 있지만 이 과정에서 다중 재머 신호에의한 각도 퍼짐으로 열화되는 성능이 얻어진다. 논문에서는 열화되는 성능의 비교를 위해 5 가지의 3D 배열 안테나를 제안하였고 도래각 추정은 MUSIC 알고리즘을, 빔 형성은 LCMV 알고리즘을 이용하였다. 또한 도래되는 재머 신호의 방위각과 앙각을 변화시키면서 BPSK 모뎀을 적용할 때 비트 오율을 계산하여 성능 비교를 하였다. 시뮬레이션 결과 Curved (B) 7-Element 형 3D 배열 안테나가 다른 안테나보다 성능이 가장 우월함을 알 수 있었다.

  • PDF

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • 제13권1호
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.

레이저빔 반사 화상을 이용한 연마면 거칠기 측정법에 관한 연구 (A Study on Roughness Measurement of Polished Surfaces Using Reflected Laser Beam Image)

  • ;임한석;김화영;안중환
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.145-152
    • /
    • 1999
  • This paper presents the principle and experimental results of a non-contact surface roughness measurement by means of screen projected pattern of lase beam reflected from a polished surface. In the reflected laser beam pattern especially from a fine surface like ground or polished one, light intensity varies from the center fo the image to its boundary as the Gaussian distribution. The standard deviation of a light intensity distribution is assumed to be a good non-contact estimator for measuring the surface roughnes, because the light reflectivity is known to be well related with the surface roughness. This method doesn't need to discriminate between the specularly reflected light and the diffusely reflected one, whereas the scattered laser intensity method must do. Nor it needs to adjust the change of light intensity caused by environmental lights or specimen materials. Reflected laser beam pattern narrowly spreads out in the vertical direction to tiny scratches on the polished surface due to abrasives. The deeper the scratch the more the dispersion, which means the rougher surface. The standard deviation of the pattern is nearly in proportion to the surface roughness. Measurement errors by this method are shown to be below 10 percent compared with those obtained by a common contact method. The inclination of measuring unit from the normal axis causes the measurement errors up to 10 percent for an angle of 4 degree. Therefore the proposed method can be used as an on-the-machine quick roughness estimator within 10 percent measurement error.

  • PDF

미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발 (Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

The genial tubercle: A prospective novel landmark for the diagnosis of mandibular asymmetry

  • Lee, Seung-Youp;Choi, Dong-Soon;Jang, Insan;Song, Geun-Su;Cha, Bong-Kuen
    • 대한치과교정학회지
    • /
    • 제47권1호
    • /
    • pp.50-58
    • /
    • 2017
  • Introduction: Identifying menton (Me) on posteroanterior cephalograms and three-dimensional (3D) cone-beam computed tomography (CBCT) images is difficult, because the midpoint of the symphyseal area is not identifiable after the mandibular symphysis fuses at an early age. The aim of this study was to evaluate the reliability of the identification of the genial tubercle (GT) in patients with mandibular asymmetry and to compare it with that of the traditional landmark, Me. Methods: The samples comprised 20 CBCT images of adults with mandibular asymmetry. Two examiners performed the identifications and measurements. Me and GT were marked, and the anteroposterior, vertical, and transverse distances to the three reference planes were measured on 3D-reconstructed CBCT images. The intra- and inter-examiner reliability of landmark identification of Me and GT were assessed using the intraclass correlation coefficient (ICC) and Bland-Altman plots. Results: The Me and GT landmarks showed excellent reliability ($ICC{\geq}0.993$) three-dimensionally. In the transverse evaluation, the ICC values of the GT (range, 0.997-0.999) tended to be slightly higher than those of Me (range, 0.993-0.996). In the Bland-Altman plots for the two separate assessments, Me showed a maximum error of 1.76 mm in the transverse direction, whereas the GT showed a maximum error of 0.96 mm in the 95% limit. Conclusions: Our results suggest that both Me and GT are clinically reliable and equally useful landmarks for the evaluation of mandibular asymmetry on CBCT images.

마이크로웨이브 포토닉 시스템에서의 잡음과 지터에 관한 연구 (Noise and Timing Jitter Consideration in Microwave Photonic Systems)

  • 정병민;이승훈;장유신
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.234-242
    • /
    • 2021
  • 위상배열 레이다를 위한 마이크로웨이브 포토닉 (MWP) 시스템을 구현할 경우, 송수신되는 빔의 정확도를 위해서 잡음 및 시간 지연 오차는 최소화 되어야 한다. MWP 시스템에서의 시간 지연 오차는 신호의 잡음에 의해 발생하고 timing jitter에 기인한다. 본 논문에서는 위상배열 레이다를 위한 MWP 시스템에서의 잡음 및 timing jitter에 대하여 분석하였고 광 증폭기의 이득변화에 따른 잡음 및 timing jitter 변화를 실험을 통해 검증하였다. 광 증폭기에 의한 신호의 증폭율과 잡음의 증폭율이 동일할 때까지 신호를 증폭하면 timing jitter는 감소하고 신호의 SNR은 증가하는 것을 확인하였다.

Detection of Second-Layer Corrosion in Aging Aircraft Fuselage

  • Kim, Noh-Yu;Achenbach, J.D.
    • 비파괴검사학회지
    • /
    • 제26권6호
    • /
    • pp.417-426
    • /
    • 2006
  • A Digital X-ray imaging system using Compton backscattering has been developed to obtain a cross-sectional profile and mass loss of corroded lap-splices of aging aircraft from density variation. A slit-type camera was designed to focus on a small scattering volume inside the material, from which the backscattered photons are collected by a collimated scintillator detector for interpretation of material characteristics. The cross section of the lap-joint is scanned by moving the scattering volume through the thickness direction of the specimen. The mass loss of each layer has been estimated from a Compton backscatter A-scan to obtain the thickness of each layer including the aluminum sheet, the corrosion layer and the sealant. Quantitative information such as location and width of planar corrosion in the lap splices of fuselages is obtained by deconvolution using a nonlinear least-square error minimization method(BFGS method): A simple reconstruction model is also introduced to overcome distortion of the Compton backscatter data due to attenuation effects attributed to beam hardening and quantum noise.

함상 안테나 구동용 안정화장치의 정밀 위치제어 (A Precision Position Control of Antenna Driving System in Naval Vessel)

  • 조택동;서승호;남기정
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.190-196
    • /
    • 2001
  • The naval vessel must moves rolling, pitching, yawing by wave when it runs in ocean. Some narrow beam antenna needed position compensation by stabilizer or gimbal for best performance. This paper presents the precision position control for heavy weight(130kg) in roll and pitch direction. Generally it's called for gimbal. This gimbal uses P-I controller, and it's driven by linear actuator and servo motor. This gimbal gets ship's gyro signal and synchro, which have the absolute angle value. Some other similar equipments are driven by huge hydraulic power, but this gimbal is driven by small servo motor. This control loop gets the following procedure repeatedly; reading ship gyro and gimbal synchro, calculating compensated error and control output, driving motor and actuator The performance of gimbal system was satisfied.

  • PDF

위상배열 레이다를 위한 적응 추적 알고리즘의 설계 (Design of an adaptive tracking algorithm for a phased array radar)

  • 손건;홍순목
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.541-547
    • /
    • 1992
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three-dimensional adaptive tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track update illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver detector. A detailed simulation is conducted to test the validity of our tracking algorithm for encounter geometries under various conditions of maneuver.

  • PDF

Design of a Robot's Hand with Two 3-Axis Force Sensor for Grasping an Unknown Object

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권3호
    • /
    • pp.12-19
    • /
    • 2003
  • This paper describes the design of a robot's hand with two fingers for stably grasping an unknown object, and the development of a 3-axis force sensor for which is necessary to constructing the robot's fingers. In order to safely grasp an unknown object using the robot's fingers, they should measure the forces in the gripping and in the gravity directions, and control the measured forces. The 3-axis force sensor should be used for accurately measuring the weight of an unknown object in the gravity direction. Thus, in this paper, the robot's hand with two fingers for stably grasping an unknown object is designed, and the 3-axis force sensor is newly modeled and fabricated using several parallel-plate beams.