• Title/Summary/Keyword: Beam Coupling Loss

Search Result 35, Processing Time 0.026 seconds

Application of Piezoelectric Smart Structures for Statistical Energy Analysis (압전 지능 구조물을 이용한 통계적 에너지 해석 기법)

  • 김재환;김정하;김재도
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.257-264
    • /
    • 2001
  • In this research, piezoelectric smart structures are applied for SEA(Statistical Energy Analysis), which is well known approach for high frequency analysis. A new input power measurement based on piezoelectric electrical power measurement is proposed and compared with the conventional method in SEA. As an example, a simple aluminum beam on which piezoelectric actuator is attached is considered. By measuring the electrical impedance and electrical current of the piezoelectric actuator, the electrical power given on the actuator is found and this is In turn converted into the mechanical energy. From the measured value of the stored energy of the beam, the Internal loss factor is calculated and this value shows a good agreement with that given by the conventional method as well as the theoretical value. To compare the coupling loss factor, L-shape beam system which consists of a aluminum beam subsystem and a steel beam subsystem coupled by three pin is taken as second example. The input power and stored energy of each subsystem are found by the proposed approach. The coupling loss factor found by the electrical input power obtained from the piezoelectric actuator exhibits similar trend to the value found by the conventional method as well as the theoretical value. In conclusion, the use of SEA for high frequency application of piezoelectric smart structures is Possible. Especially, the input power that is essential for SEA can be found accurately by measuring the electrical input power of the piezoelectric actuator.

  • PDF

Coupling loss factor evaluation using loss factor based on the SEA (SEA에 기초를 둔 손실계수를 이용한 결합계수의 평가)

  • 안병하;황선웅;김영종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.568-571
    • /
    • 1997
  • The overall aim of this paper is to determine coupling loss factor using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one directional power flow between two sub structures. Using these conditions, it is possible to find the coupling loss factor equation. The comparison between theory of power transmission on conjunction and above equation, show a good agreement in simple beam structure. To check the effectiveness of above equation, it was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

Behavior of Coupling Shear Wall with New Openings (개구부 신설에 따른 병렬 전단벽의 거동특성)

  • Choi, Hyun-Ki;Choi, Youn-Cheul;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.152-160
    • /
    • 2008
  • Since wall system apartment used the shear wall as main lateral resistance member, installation of openings which causing section loss of walls may cause significant problem to structure. Also, there are few studies for inducing coupling beam or slabs which are occurred by installing openings. Therefore, this study planned isolated 2-story shear walls which are reduced three half-scale specimen to find out walls behavior characteristic. The test results showed that strength reduction caused by loss of effective section of walls and different result of stiffness and energy dissipation regarding to the coupling beam and coupling slabs.

Vibration Transmission of Plate-Beam Structure having discontinuity (평판과 보의 연성구조물의 진동에너지 전달특성 분석에 관한 연구)

  • 이형택;김정태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.391-395
    • /
    • 1997
  • The transmission of sound and vibration through structures is of interest in many noise control problems, including architectural acoustics, sound transmission through air craft, spacecraft and ship, and the transmission of noise through machinery and engine enclosures. Statistical Energy Analysis provides a simple and accurate method of approaching these problems. In this paper, comparing the measured coupling loss factor of plate-beam with measured coupling loss factor of mass on the junction will be inspected.

  • PDF

An Experimental Study on Steel Plate Coupling Beam (철골 플레이트 커플링 보의 실험적 연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.301-304
    • /
    • 2008
  • This paper presented an structural efficiency of steel coupling beam jointed single plate shear connections with seat and top angle. Parameters for the test specimens were are seat and top angle, reinforcing of concrete, embedded length, section loss. Steel coupling beam with angle showed excellent strength, stiffness, energy dissipation capacity. The specimen with no reinforcement around the embedded steel plate showed slightly low deformation capacity because of early failure in the precast concrete walls. However, the specimen with reinforcement around the embedded steel plate showed good deformation capacity. Deformation capacity was not decrease despite short embedded length. The specimen with section loss showed excellent deformation capacity. Because shear strength of steel coupling beam was lesser than of connections. These results showed that for workability and cost efficiency, the proposed system is promising for one of steel coupling beam.

  • PDF

Added Mass Effect on Structural Junction: Comparison of SEA Experimental Results with Analysis (구조물 연결부의 질량부과 효과 : SEA실험 및 해석 결과 비교)

  • 김관주;김정태;윤태중;박봉현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.359-364
    • /
    • 2002
  • Statistical energy method is widely used for the prediction of vibrational and acoustical behavior of complex structures, such as ship building and automobile in mid-, high frequency ranges. However. in order to convince this SEA result, it is important to verify estimated SEA parameters, e. g. modal density, energy in each subsystem, damping loss factor, coupling loss factor. with possible other method. For modal density parameter, the experimental estimations via Experimental Modal Analysis are checked with those from finite element method for both beam- plate and plate-plate cans. Loss factors are calculated by Lyon's simple method for the two subsystem. finally. modal experiments are carried out by varying the mass added on the junction of two subsystem for the purpose of investigating the influence on the coupling loss factor's behavior.

  • PDF

An Analysis on the Properties of Beam Coupling by Using Gaussian Beam Propagation Theory (가우시언 빔 전송 이론을 이용한 빔 결합 특성 해석)

  • Han, Seog-Tae;Kang, Jin-Man;Lee, Jeong-Won;Je, Do-Hyung;Jung, Moon-Hee;Kim, Soo-Yeon;Wi, Seog-Oh
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1324-1333
    • /
    • 2010
  • In this paper, three kinds of beam coupling losses which occur in a quasi-optics circuit for millimeter wave receiver system have been intensively investigated. First, the beam coupling losses which are caused by mismatch of beam waists radii and their positions between those of one and the other have been evaluated. It shows that beam coupling losses due to mismatch of beam waists radii and their positions between two quasi-optics circuits can be minimized if beam waist radius is chosen as larger than 3 times the operation wavelength. Second, the beam coupling losses have been studied when the axis of propagation of one beam is tilted with respect to that of the other beam. It is noted that smaller beam waist radius results in greater tolerance to tilts and angular misalignments. Third, the beam coupling cases in which two beams are offset if their axes of propagation are parallel but one is displaced relative to the other have been investigated. It is confirmed that beam waists radii with larger than 3 times operation wavelength are less sensitive to lateral offsets.

Design of beam tilting microstrip patch array antenna using H-plane coupling (H-면 결합을 이용한 빔 틸팅 마이크로스트립 패치 배열 안테나 설계)

  • 하재권;최성수;박동철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.293-296
    • /
    • 2002
  • In this paper, we proposed a beam tilting microstrip patch array antenna for the reception of satellite signals by using low cost copper etched polyester films and foams. The configuration and coupling mechanism of the proposed antenna are similar to the dipole Yagi-Uda antenna. It is composed of 3 layers of polyester films and three layers of foam. In order to prevent unwanted radiation and coupling loss by microstrip feeding networks and parasitic patches, a stacked layer with rectangular slots above the driver patch array is inserted. The 16${\times}$8 element microstrip Patch way antenna is Presented by experimental results. Its beam patterns are affected by many parameters such as sizes of the patches, gap between the patches. characteristics of the substrates, feeding method, etc. Owing to its complexities of various design parameters, both simulation and experiment were performed. The fabricated antenna received DBS signal from KOREASAT 3 by doing nothing but adjusting azimuth direction.

  • PDF

Behavior, Design, and Modeling of Structural Walls and Coupling Beams - Lessons from Recent Laboratory Tests and Earthquakes

  • Wallace, John W.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.3-18
    • /
    • 2012
  • Observed wall damage in recent earthquakes in Chile and New Zealand, where modern building codes exist, exceeded expectations. In these earthquakes, structural wall damage included boundary crushing, reinforcement fracture, and global wall buckling. Recent laboratory tests also have demonstrated inadequate performance in some cases, indicating a need to review code provisions, identify shortcomings and make necessary revisions. Current modeling approaches used for slender structural walls adequately capture nonlinear flexural behavior; however, strength loss due to buckling of reinforcement and nonlinear and shear-flexure interaction are not adequately captured. Additional research is needed to address these issues. Recent tests of reinforced concrete coupling beams indicate that diagonally-reinforced beams detailed according to ACI 318-$11^1$ can sustain plastic rotations of about 6% prior to significant strength loss and that relatively simple modeling approaches in commercially available computer programs are capable of capturing the observed responses. Tests of conventionally-reinforced beams indicate less energy dissipation capacity and strength loss at approximately 4% rotation.

Mode Size Converter based on Muitimode Fiber Taper (다중모드 광섬유 테이퍼를 이용한 모드 크기 변환기)

  • Kim, Kwang-Taek;Park, Kiu-Ha;Hyun, Woong-Keun;Jung, Yong-Min;Lee, Byeong-Ha
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.280-285
    • /
    • 2007
  • Based on the multimode fiber taper, a mode size converter for effective optical beam coupling between laser and optical fiber or between the two different optical fibers has been proposed and demonstrated. The device has a multimode input end and a single mode output end. The influence of various parameters, including device structure and launching conditions, on the coupling efficiency has been theoretically analyzed. The theoretical results revealed that the gaussian beam can be coupled into a single mode fiber without considerable insertion loss. The proposed multimode fiber taper has been fabricated using heating and pulling equipment incorporating two micro-torches. Experimental results showed that an optical beam with $50\;{\mu}m$ of large beam size was effectively coupled into single mode fiber through the multimode fiber taper. The insertion loss of the device was 1.3 dB.