• 제목/요약/키워드: Beam Center

Search Result 2,025, Processing Time 0.034 seconds

Fabrication of carbon nanotube electron beam (C-beam) for thin film modification

  • Kang, Jung Su;Lee, Su Woong;Lee, Ha Rim;Chung, Min Tae;Park, Kyu Chang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.171.1-171.1
    • /
    • 2015
  • Carbon nanotube emitters is very promising electron emitter for electron beam applications. We introduced the carbon nanotube electron beam (C-beam) exposure technic using triode structure. As a source, the electron beam emit from CNT emitters placed at the cathode by high electric field. Through the gate mesh, with high accelerating energy, the electron can be extracted easily and impact at the anode plate. For thin film modification, after the C-beam exposure on the amorphous silicon thin film, we found phase changes and it showed a high crystallinity from the Raman measurement. We expect that this crystallized film will be a good candidate as a new active layer of TFT.

  • PDF

Electron Temperature, Plasma Density and Luminous Efficiency in accordance with Discharge Time in coplanar AC PDPs

  • Jeong, S.H.;Moon, M.W.;Oh, P.Y.;Jeong, J.M.;Ko, B.D.;Park, W.B.;Lee, J.H.;Lim, J.E.;Lee, H.J.;Han, Y.G.;Son, C.G.;Lee, S.B.;Yoo, N.L.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1203-1206
    • /
    • 2005
  • Electron temperature and plasma density in coplanar alternating-current plasma display panels (AC-PDP's) have been experimentally investigated in accordance with discharge time by a micro-probe in this experiment. The resolution of a step mortor to move in micro-Langmuir probe is 10um.[1-3] The used gas in this experiment is He-Ne-Xe (4%) mixure gas. And sustain voltage is 320V which is above of firing voltage for degradation. The electron temperature and plasma density can be obtained from current-voltage (I-V) characteristics of micro Langmuir probe, in which negative to positive bias voltage was applied to the probe. And Efficiency is calculated by formula related discharge power and light emission. Those experiments operated as various discharge time ($0{\sim}72$ Hours). As a result of this experiment, Electron Temperature was increased from 2eV to 5eV after discharge running time of 20 hours and saturates beyond 20 hours. The plasma density is inversely proportional to the square root of electron temperature. So the plasma density was decreased from $1.8{\times}10^{12}cm^{-3}$ to $8{\times}10^{11}cm^{-3}$ at above discharge running time. And the Efficiency was reduced to 70% at 60hours of discharge running time.

  • PDF

Dosimetric Impact of Ti Mesh on Proton Beam Therapy

  • Cho, Shinhaeng;Goh, Youngmoon;Kim, Chankyu;Kim, Haksoo;Jeong, Jong Hwi;Lim, Young Kyung;Lee, Se Byeong;Shin, Dongho
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.144-148
    • /
    • 2017
  • When a high density metallic implant is placed in the path of the proton beam, spatial heterogeneity can be caused due to artifacts in three dimensional (3D) computed tomography (CT) scans. These artifacts result in range uncertainty in dose calculation in treatment planning system (TPS). And this uncertainty may cause significant underdosing to the target volume or overdosing to normal tissue beyond the target. In clinical cases, metal implants must be placed in the beam path in order to preserve organ at risk (OARs) and increase target coverage for tumors. So we should introduce Ti-mesh. In this paper, we measured the lateral dose profile for proton beam using an EBT3 film to confirm dosimetric impact of Ti-mesh when the Ti-mesh plate was placed in the proton beam pathway. The effect of Ti-mesh on the proton beam was investigated by comparing the lateral dose profile calculated from TPS with the film-measured value under the same conditions.

Feasibility Test of Flat-Type Faraday Cup for Ultrahigh-Dose-Rate Transmission Proton Beam Therapy

  • Sang-il Pak;Sungkoo Cho;Seohyeon An;Seonghoon Jeong;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.108-113
    • /
    • 2022
  • Purpose: Proton therapy has been used for optimal cancer treatment by adapting its Bragg-peak characteristics. Recently, a tissue-sparing effect was introduced in ultrahigh-dose-rate (FLASH) radiation; the high-energy transmission proton beam is considered in proton FLASH therapy. In measuring high-energy/ultrahigh-dose-rate proton beam, Faraday Cup is considered as a dose-rate-independent measurement device, which has been widely studied. In this paper, the feasibility of the simply designed Faraday Cup (Poor Man's Faraday Cup, PMFC) for transmission proton FLASH therapy is investigated. Methods: In general, Faraday cups were used in the measurement of charged particles. The simply designed Faraday Cup and Advanced Markus ion chamber were used for high-energy proton beam measurement in this study. Results: The PMFC shows an acceptable performance, including accuracy in general dosimetric tests. The PMFC has a linear response to the dose and dose rate. The proton fluence was decreased with the increase of depth until the depth was near the proton beam range. Regarding secondary particles backscatter from PMFC, the effect was negligible. Conclusions: In this study, we performed an experiment to investigate the feasibility of PMFC for measuring high-energy proton beams. The PMFC can be used as a beam stopper and secondary monitoring system for transmission proton beam FLASH therapy.

Spatiotemporal behavior of excited Xe atoms density in Counter discharged type AC-PDP

  • Hong, Young-June;Oh, Phil-Yong;Jeong, Se-Hoon;Hong, Jong-Hwa;Kim, Jung-Hyun;Gyu, Yong;Cho, Seok-Ho;Hong, Sung-Hee;Hong, Byoung-Hee;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.574-577
    • /
    • 2007
  • We have measured the excited Xe atoms density in the $1s_5$ metastable states by laser absorption spectroscopy in counter discharged type AC-PDP. This experiment has shown the characteristic of the excited Xe atoms density which is relation to the visible light efficiency of PDP. The density of counter discharged AC-PDP have measured to be $9.47\;{\times}\;10^{13}\;cm{-3}$. The result has been shown to higher value than $1.45\;{\times}\;10^{13}\;cm^{-3}$ of conventional AC-PDP.

  • PDF

MgO Sputtering in the AC-PDPs with Monte Carlo Methods

  • Gill, Doh-Hyun;Kim, Hyun-Sook;Joh, Dae-Guen;Kim, Young-Guon;Choi, Eun-Ha;Cho, Guang-Sup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.109-110
    • /
    • 2000
  • Sputtering yield of MgO film in the AC-PDPs has been calculated by Monte Carlo simulation of ion scattering. In the ion energy range less than 50 eV, the sputtering yield is 4 ${\times}$ $10^{-4}$ for Xe ions and it is between 0.1 and 0.01 for He, Ne, and Ar ions. The erosion rate is estimated about $25{\AA}$ per hour for Xe ions in an actual PDP plasma for sustain and full white mode.

  • PDF

Surface Discharge in Various Electrode Geometries

  • Joh, Dai-Geun;Kim, Hyun-Sook;Gill, Do-Hyun;Kim, Young-Goun;Choi, Eun-Ha;Cho, Guang-Sup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.111-112
    • /
    • 2000
  • The breakdown characteristics of surface discharge investigated experimentally agree well with the analytic results of previous reports [1-3] in various electrode geometries. Additionally, we find that the electrode geometry effects on the firing voltage can be understood with the ionization probability relating to the number of priming particles. We have also observed the shape of surface discharge and the surface striations in the gap geometry with the pressure, the applied voltage, and the driving frequency.

  • PDF