• Title/Summary/Keyword: Bead welding

Search Result 584, Processing Time 0.022 seconds

Prediction of the fatigue life of a box weldment with residual stress (잔류응력을 고려한 box 용접부의 피로수명 예측)

  • 김현수;윤중근;김하근;박동환
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.252-254
    • /
    • 2004
  • Fatigue life a box weldment was predicted with the stress concentration and residual stress using the equation reported. In order to change the stress concentration and residual stress of the box weldment, Post treatments such as smooth grinding of weld bead, weld toe grinding and hammer peening were applied. The fatigue life of the weldment after post treatment clearly increased, which is attributed to the reduction of stress concentration and/or introduction of compressive residual stress at the weld toe. The predicted fatigue life was a relatively good agreement with the experiment for a long fatigue life, while it was underestimated for a short fatigue life.

  • PDF

On the Weld-Induced Deformation Analysis of Curved Plates (곡판의 맞대기 용접변형 거동에 관한 연구)

  • Lee, Joo-Sung;Tan-Hoi, Nguyen
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.201-204
    • /
    • 2006
  • A three-dimensional finite element (FEM) model has been developed to simulate the deformation due to bead on plate welding of curved plates with curvature in the weld direction. By using traditional method such as thermal-elastic-plastic FEM, the weld-induced deformation can be predicted accurately. However, this method is not practical approach to analyze the deformation of large and complex structures such as ship hull structures in view of time and cost. This study is classified from the aspect of equivalent load based on inherent strain near the weld line. Therefore, the residual deformation can be simply computed by elastic analysis. Further more, a practical solution is proposed to consider the contact between the plate and the positioning jig by judging the reaction forces of the jig at calculation step and the effect of the longitudinal curvature is closely considered.

  • PDF

Stamping Analyses of Laser Welded Door Inner and Die Design (레이저 용접 도어 인너의 성형해석과 금형설계)

  • 김헌영;신용승;김관희;조원석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.65-71
    • /
    • 1997
  • Computer simulations and test trials are carried out to get the optimal conditions about the stamping die design of the tailor laser welded automotive door inner. Firstly, the stamping process including gravity deflection, bead calibration, binder wrap, forming and spring back, are analyzed by the computer simulation. The results of simulation shows good correspondance with those of test trial under the same conditions. The variables of parametric study which will be investigated in the simulation and test trials, are determined form the results of the first run. The formability under the various conditions is evaluated, which are the initial postion of blank, blank holding force, corner radius and the shape of drawbead. Finally, well controled sound product without fracture, wrinkling and excessive weldline movement is obtained.

  • PDF

The Effect of residual stress on fracture behavior in the laser weldment (레이저용접부의 파괴에 미치는 잔류응력의 영향)

  • Cho, Sung-Kyu;Yang, Young-Soo;Noh, Young-Jin
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • The integrity of laser welded structures is decided in fracture strength and fatigue strength. This study made an effort to understand the fracture behavior considering residual stress. Experiments are conducted and analyses are performed to explore the influence of residual stress on fracture behavior of bead-on laser welded compact specimen. Fracture experiments are performed using ASTM 1820. The performed analyses included thermo-elasto-plastic analyses for residual stress and subsequent J-integral calculation. A modified J integral is calculated in the presence of residual stresses. The J-integral is path-independent for combination of residual stress field and stress due to mechanical loading. The results indicates that the tensile residual stress near crack front bring the low fracture load while the compressive residual stress bring the high fracture load compared to no residual stress specimen. These results quantitatively understand the influence of residual stress on fracture behavior.

  • PDF

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF

Study on copper end-tab shape for maximum heat discharging performance (방열 성능 향상을 위한 구리 엔드 탭의 최적형상 연구)

  • Choi, Yeou-Myeong;Choi, Yoon-Hwan;Cho, Sang-Myung;Park, Jung-Hyun;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • When implementing butt joint welding of two plates, it is useful to attach end-tabs made of a metal with high heat conductivity (e.g., copper) at the front and back sides of the welded plates to prevent the bead from rolling down and prevent defects that may occur at the tips of the weld zone. In this study, the fin shape, which is known to have good heat discharging characteristics by natural convection, has been applied to enhance the cooling performance of the end-tab. From both experiment and numerical analysis, it was confirmed that end-tabs with fin-shaped holes have better heat discharging performance than end-tabs without holes. Through thermal and fluid flow analysis, the cooling rates of end-tabs with different hole shapes were estimated in order to figure out characteristics of shape factor that are important for the heat discharging performance. As a result, we found that the structure including vertical fins with optimal fin gap was the best-performing shape.

Effect of shield gas on the characteristics of $CO_2$ laser welded 600MPa grade high strength steel (600MPa급 자동차용 고장렬강판의 $CO_2$ 레이저 용접부의 특성에 미치는 보호가스의 영향)

  • Han Tae-Kyo;Lee Bong-Keun;Kang Chung-Yun
    • Laser Solutions
    • /
    • v.7 no.2
    • /
    • pp.19-26
    • /
    • 2004
  • The effect of shield gas on the weldability, mechanical properties and formability of CO2 laser weld joint in 600MPa grade high strength steel was investigated. Bead on plate welds were made under various welding speed and shield gas. Tensile test was carried out under the load of perpendicular and parallel direction to the weld line, Formability of the joint was evaluated by Erichsen test. As the welding speed increases, the porosity fraction decreases. The porosity fraction in the joint used Ar-$50\%He$ mixed gas as a shield gas was lower than that of the joint used Ar gas. Hardness at the weld metal of full penetrated joint was nearly equal to that of water quenched raw metal. In a tensile test under a perpendicular load to the weld axis, strength and elongation of joint produced by optimum condition were nearly equal to those of base metal. However, the strength of joint in a tensile test under a parallel load to weld axis was higher than that of raw metal, but the elongation of joint was lower than that of raw metal. Elongation and formability were further increased by the method of using Ar+He mixed gas as a shield gas as compared with Ar gas. Formabilities of joints were recorded ranging from $58\%\;to\;70\%$ of that of base metal with different shield gases.

  • PDF

Analysis of the Effect of Small-Bore Piping Resonance Frequency on Defect of Welding Area (용접부의 결함이 소구경배관의 공진 주파수에 미치는 영향 분석)

  • Yoon, Min Soo;Song, Ki O;Lee, Jae Min;Ha, Seung Woo;Cho, Sun Young
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.9-14
    • /
    • 2018
  • The piping system of a nuclear power plant plays a role of transferring high energy fluid to equipment and various devices. The safety and soundness of these piping systems are very closely related to the operability of the power plant. In the case of a welded part of a small diameter pipe, it may grow as a microcrack due to a lack of penetration, and it may grow to a size that affects the safety of the pipe due to the influence of mechanical vibration and fatigue load. Resonance refers to an increase in energy as the natural frequency of an object coincides with the frequency applied to the external force. When this resonance occurs, the frequency is the resonance frequency. In this study, when defects exist in the welds of small diameter pipe, the natural frequency of the pipe changes and resonance may occur. Since these resonances are likely to cause fatigue damage to the piping, resonance frequency changes due to the size and shape of the defects are analyzed and evaluated. As a result of the vibration test, the resonance frequency tended to decrease as the depth of the defect deepened, and the influence was larger when the defect existed at the bottom of the top of the trough. Also, it was confirmed that the Transverse cracks had an effect on the resonance frequency in the presence of the cracks in the weld bead, compared to the longitudinal cracks. As a result of this study, it is expected that the cause of the defect and the condition of the pipe can be monitored because the resonance frequency tendency according to the shape of the crack is analyzed.

An Investigation of Stress Corrosion Cracking Characteristics of SUS 304 Stainless Steel Weldments (SUS 304鋼 熔接部 의 SCC特性 에 관한 硏究)

  • 김영식;임우조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.6
    • /
    • pp.569-575
    • /
    • 1984
  • The characteristics of the stress corrosion cracking of SUS 304 stainless steel weldments were studied with the speciments of the constant displacement type under the environment of 42% MgC $l_{2}$ boiled solution (143.+.-.2.deg.C). The susceptibility of initiation and propagation of the stress corrosion crack was quantitatively inspected in the weld metal, heat affected zone and heat affected zone with including the reinforcement shape, respectively. Also, those susceptibility were discussed in connection with the change of mechanical and microstructural characteristics caused by heating cycle of welding. Main results obtained are as follows: (1)Stress corrosion cracking is easiest to initiate and propagate in the heat affected zone of weldment. (2)The susceptibility of stress corrosion cracking of the weldment is largely improved by eliminating the reinforcement part of the weld bead. (3)The dominant factor of the cracking susceptibility of the heat affected zone appeared to be the phenomenon of softening and sensitizing caused by welding heat cycle. (4)Under the low loading conditions, the behavior of stress corrosion cracking of the SUS 304 steel weldment is largely influenced by the pitting phenomenon in the front region of the main crack.

강용접부의 표면균열 성장거동에 관한 연구 1

  • 정세희;박재규;이종기
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.30-39
    • /
    • 1988
  • Generally, as the welded region of weld structures has the incomplete bead and welded deposit which are able to behave like the surface cracks occasinally, there is a high possibility that the fatigue fracture of the weld structures is due to the surface cracks on the wlded region. This study was done to investigate the effects of post weld heat treatment (PWHT) on the fatigue behaviors of the surface crack of the heat affected zone (HAZ) for the multi-pass welds under the repetitive pure bending moment. The obtained results are summarized as follows : 1. The crack grows to the depth direction initially as the number of cylces increase, the amount of crack length is increased for the surface dir3ction and cive versa for the depth direction. 2. The fatigue life is increased in a order of as weld, PWHT specimens and parent. 3. As the number of cycles increase, the crack length is increased to th surface direction. The increase of the depth length is blunted at the center of specimen thickness. 4. The fatigue crack growth of PWHT specimens to the surface direction is dependent upon the holding time and applied stress during PWHT. In order words, the crack growth rate decreases with the holding time and increases with the applied stress during PWHT. 5. As the crack grows, the aspect formed in the course of crack propagation approaches to semicircle for parent and ellipse with the largest semidiameter for PWHT ($1/4hr, 15kgf/mm^2$) 6. At depth direction, it is difficult to apply to the paris' equation because of the scattered data between the crack growth rate and the stress intensity factor range.

  • PDF