• Title/Summary/Keyword: Bead material

Search Result 214, Processing Time 0.023 seconds

Detecting Characteristics of Catalytic Combustible Gas Sensor (접촉연소식 가스 센서의 검지특성)

  • 박찬원;원창섭;유영한;안형근;한득영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.865-870
    • /
    • 2000
  • In this paper, catalytic combustible gas sensor was fabricated and tested under flammable gases such as CH$_4$and $C_4$H$_{10}$by using Pt coil as a heater and/or temperature sensing element. Fine $Al_2$O$_3$powder was used for a bead and Pt, Pd noble metal powder for a catalyst. Resistance variation of Pt wire was traced by the changes of the gas concentrations in a chamber. Output voltage was then monitored to obtain the gas concentration from the resistance variation. In this experiment, MgO was used to protect cracks in the based and TiO$_2$to increase the sensitivity of the sensors. Water glass was also added to enhance the selectivity to the combustible gases.s.

  • PDF

A study on the fatigue life and the change of the strain during the fatigue fracture on the fillet welded specimens of SM490A (SM490A 재질 필렛 용접시편의 피로수명과 용접부 피로파단시 스트레인 변화 연구)

  • 김재훈;구병춘
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.345-349
    • /
    • 2004
  • This study investigates the fatigue lives of SM490A material(base metal) specimens and fillet weld specimens, which are made same material and weld method for the railway vehicle. These fatigue lives have a difference, the fatigue lives of weld specimen are shorter than those of base metal. We measured the strains on the weld positions of the specimens during the fatigue test for investigation of crack initiation and crack growth. In these result, we could find the information of the crack initiation position on weld bead and the history of crack growth. Also we knew that the fatigue crack initiation cycles and the changes of the strain which were affected the fractured surface roughness and morphology.

The Design of Electronic Ballast for Multiple Lamps Using the Ferrite Bead (페라이트 비드를 이용한 다등용 전자석 안정기 설계)

  • Ko, Seok-Cheol;Lee, Jae;Lim, Sung-Hun;Choi, Myong-Hoo;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.589-592
    • /
    • 2001
  • In this paper, Electronic ballast for multiple fluorescent lamps based on the use of ferrite beads are presented. The use of this system in place of the conventional electromagnetic ballast results in lower power consumption and reduced maintenance cost, because the electronic system has higher efficiency and longer lamp lifetime than the electromagnetic ballast. In comparison with the conventional electronic ballast. The proposed system presents a significant reduction of cost. This reduction becomes were meaningful with the growing of the lamp number. The description of the lighting system, We show that the proposed model can be applied to multiple lamps electronic ballast by simulation processes.

  • PDF

Selective Array of Polystyrene Beads by Using Nanometer-Scaled Hydrophilic Thin Film Patterning (나노미터 규격의 친수성 박막 패터닝을 이용한 선택적 폴리스티렌 입자 배열)

  • Kang, Jung-Hwa;Kim, Kyoung-Soeb;Kim, Nam-Hoon;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.103-104
    • /
    • 2007
  • Nanometer-scaled polymer beads, such as polystyrene beads, were used as nanometer fabrication materials due to their some advantages such as self-assembled monolayer, nanometer scaled size and excellent compatibility with silicon based devices. Thus, the investigation on these properties of polymer beads was required. It is difficult to control the array of polystyrene beads on silicon substrate. In this study, we investigated the condition of selective array of polystyrene beads on nanometer-scaled hydrophilic surface which was obtained by APS coating. A tilting method was used to array the polystyrene beads selectively on the substrate. The polystyrene beads could be arrayed selectively by this method. From these results, we verified that there are possibilities to fabricate unique tools for the nanometer-scaled electrical devices.

  • PDF

Evaluation of Process Parameter to Laser Welding of Solar Panel (태양열 집열판의 레이저용접을 위한 공정변수 평가)

  • Kim, Yong;Park, Ki-Young;Kim, Bu-Hwan
    • Laser Solutions
    • /
    • v.14 no.4
    • /
    • pp.9-13
    • /
    • 2011
  • The solar panel that consists of copper plate and copper tube was successfully welded by ultrasonic seam welding. However it was not only expensive the copper material but also ultrasonic welding has many problem such as high error rate, difficulty of dissimilar material welding, noise, etc. At this study, the laser welding of solar panel with aluminum plate instead of copper. The welding were carried out with the pulsed Nd:YAG laser and the weld bead geometry was measured with the variation of pulse energy. Consequently, there was no difference between the ultrasonic and the laser welding on the performance of heat transfer capacities. Also the formation of intermetalic compound such as CuAl2 was increased with the pulse energy.

  • PDF

Study on Impact Properties of Polyamide 12 depending on Temperature by Selective Laser Sintering Process (선택적 레이저 소결 공정 적용 폴리아미드 12의 온도별 충격 특성에 관한 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.136-142
    • /
    • 2018
  • Additive manufacturing process technology, known as the 3D printing process, is expanding its utilization from simple model realization to commercialized part production based on continuous material development. Recently, research and development have been actively carried out to fabricate lightweight and high-strength parts using polymers, such as polyamide (polyamide), which is a high-strength engineering plastic material. In this study, the Izod impact characteristics were analyzed for polyamide 12 (PA12) materials. For the specimen production, selective laser sintering process technology, which has excellent mechanical properties of finished products, was applied. In addition, PA12 and glass bead reinforced PA12 materials were produced. The specimens were classified according to the production direction on the production platform, and each specimen was subjected to an Izod test at test temperatures of $-25^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. As a result, the impact strength of PA12 and glass bead-reinforced PA12 of vertical direction specimens were 48.8% and 16.3% lower than those of the parallel specimens at a $25^{\circ}C$ test temperature and the impact strength of parallel specimens was improved by 46.5% and 20.4% at a test temperature of $60^{\circ}C$ compared to that at $-25^{\circ}C$.

Study on Flexural Properties of Polyamide 12 according to Temperature produced by Selective Laser Sintering (선택적 레이저 소결 제작 폴리아미드 12 시편의 온도별 굴곡 특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.319-325
    • /
    • 2018
  • The use of 3D printing (Additive Manufacturing) technology has expanded from initial model production to the mass production of parts in the industrial field based on the continuous research and development of materials and process technology. As a representative polymer material for 3D printing, the polyamide-based material, which is one of the high-strength engineering plastics, is used mainly for manufacturing parts for automobiles because of its light weight and durability. In this study, the specimens were fabricated using Selective Laser Sintering, which has excellent mechanical properties, and the flexural characteristics were analyzed according to the temperature of the two types of polyamide 12 and glass bead reinforced PA12 materials. The test specimens were prepared in the directions of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ based on the work platform, and then subjected to a flexural test in three test temperature environments of $-25^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. As a result, PA12 had the maximum flexural strength in the direction of $90^{\circ}$ at $-25^{\circ}C$ and $0^{\circ}$ at $25^{\circ}C$ and $60^{\circ}C$. The glass bead-reinforced PA12 exhibited maximum flexural strength values at all test temperatures in the $0^{\circ}$ fabrication direction. The tendency of the flexural strength changes of the two materials was different due to the influence of the plane direction of the lamination layer depending on the type of stress generated in the bending test.

Microstructure of Electron Beam Welded Cu / STS 304 Dissimilar Materials (전자빔 용접된 Cu / STS 304강의 미세조직에 관한 연구)

  • Park, Kyoung-Tae;Kim, In-Ho;Baek, Jun-Ho;Chun, Byung-Sun
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • According to the research report for the recent a few years, the dissimilar welding of Cu and STS 304 alloy have been presented that a weldability is very poor. This article present a study on Lap joint by Electron beam welding dissimilar materials. The weld metals was constituted between pure copper and STS 304 steel. The experiment was performed with 125mA welding current, 520mA focusing current. The Vacuum condition of chamber is 5${\times}$10-5torr and welding speed is 300mm/min. Showing the bead shape of weld metal, the thickness of the stainless 304 using as the protect materials is 3mm and the thickness of a copper is 15mm. The analysis about the microstructure were carried out in which it was observed with SEM. The results showed that complex heterogeneous fusion zone microstructure characterized both by rapid cooling and mixing of the molten metal, however the liquation crack was formated in the fusion line.

A Study on the Binding Force of Drawbead in the Sheet Metal Forming Process through the finite element and experimental analysis (해석과 실험을 통한 박판성형공정에서의 드로오비드의 구속력에 관한 연구)

  • Bahn, Gab-su;Mo, Chang-ki;Suh, Eui-kwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.5-14
    • /
    • 2007
  • It is necessary for development of drawing product with press to have suitable material selection & all process design and the problem during press process has been cleared from judgement of experience & trial and error. Recently we can estimate press process result from computer aided design & FEM. But we can get more reliable result when we can put more precise process variants during FEM. In case of using a drawbead that is used for the material inflow, it is considered for us to put material property, other analysis condition & friction figure when material is passing through the drawbead for better FEM. From our study, we have drawn an analogy bead connection depth, friction figure & drawing and restraining load according to kinds of lubrication from experiment & FEM for the drawbead. We applied above result to the drawing experiment & FEM and confirmed the validity. We could notice the relation between friction figure & drawing load and the friction figure variation according to kinds of lubrication. It is expected to draw more precise analogy that can be used for real process due to more precise process variants application to FEM.

  • PDF

Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Cylindrical Multi-Pass Welding Process of Metals (열원 입력과 비드 생성 방법이 원통형 다층 금속 용접 과정의 유한요소해석에 미치는 영향)

  • Park, Won Dong;Bahn, Chi Bum;Kim, Ji Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.455-467
    • /
    • 2017
  • In this study, a finite element analysis of a cylindrical multi-pass weldment for dissimilar metals was performed. The effects of the heat input method and weld bead generation method were considered. We compared two heat input methods: the heat flux method and the temperature method. We also compared two weld bead generation methods: the element birth method and the quiet element method. Although the results of the thermal analysis show deviations between the two heat input methods, the welding residual stresses were similar. Because the areas exposed to high temperature were similar and the strength of the material was very low in high temperature (above the $1000^{\circ}C$), the effects of the weld bead temperature were insignificant. The distributions of the welding residual stress were similar to each other. However, gaps and overlaps occurred on the welding boundary surfaces when the element birth method was applied. The quiet element method is more suitable for a large deformation model in order to simulate a more accurate weld shape.