• Title/Summary/Keyword: Bead geometry

Search Result 116, Processing Time 0.03 seconds

An Experimental study on Prediction of Back-bead Geometry in Pipeline Using the GMA Welding Process (GMA를 이용한 배관용접의 이면비드 형상예측에 관한 실험적 연구)

  • Kim, Ji-Sun;Kim, Ill-Soo;Na, Hyun-Ho;Lee, Ji-Hye
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.74-80
    • /
    • 2011
  • In this study, a variety of welding experiments were carried out to optimize root-pass welding process using GMA process. Based on the experimental results, optimal welding conditions were selected after analyzing correlation between welding parameters and back-bead geometry. Then, effectiveness of empirical models developed was compared and analyzed, and optimized empirical models were finally developed for predicting back-bead by analyzing the main effect of each factor which affects back-bead geometry and their influence on interaction. Also, functions proper for expressing the surface of back-bead were selected using diverse quadratic functions, and back-bead geometry was visualized using empirical models developed and quadratic functions.

Development of Experimental Model fer Bead profile Prediction in GMA Welding (GMA용접에서 비드단면형상을 예측하기 위한 실험적 모델의 개발)

  • Son Joon-Sik;Kim Ill-Soo;Park Chang-Eun;Kim In-Ju;Jeong Ho-Seong
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.41-47
    • /
    • 2005
  • Generally, the use of robots in manufacturing industry has been increased during the past decade. GMA(Gas Metal Arc) welding process is an actively Vowing area, and many new procedures have been developed for use with high strength alloys. One of the basic requirement for the automatic welding applications is to investigate relationships between process parameters and bead geometry. The objective of this paper is to develop a new approach involving the use of neural network and multiple regression methods in the prediction of bead geometry for GMA welding process and to develop an intelligent system that visualize bead geometry in order to employ the robotic GMA welding processes. Examples of the simulation for GMA welding process are supplied to demonstrate and verify the proposed system developed using MATLAB. The developed system could be effectively implemented not oかy for estimating bead geometry, but also employed to monitor and control the bead geometry in real time.

A New Algorithm for Predicting Process Variables on Welding Bead Geometry for Robotic Arc welding (로봇 아아크 용접에서 비드 형상에 공정변수들을 예측하기 위한 새로운 알고리즘)

  • 김일수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.36-41
    • /
    • 1997
  • With the trend towards welding automation and robozation, mathematical models for studying the influence of various parameters on the weld bead geometry in Gas Metal Arc(GMA) welding process are required. The results of bead on plate welds deposited using the GMA welding process has enabled mathematical relationships to be developed that model the weld bead geometry. Experimental results were compared to outputs obtained using existing formulae that correlate process input variables to output parameters and subsequent modelling was performed in order to better predict the output of the GMA welding process. The aim of this work was to explain the relationships between GMA welding variables and weld bead geometry and thus, be able to predict input weld bead size. The relationships can be usefully employed for open loop process control and also for adaptive control provided that dynamic sensing of process output is performed.

  • PDF

Classification of Fuzzy Logic on the Optimized Bead Geometry in the Gas Metal Arc Welding

  • Yu Xue;Kim, Ill-Soo;Park, Chang-Eun;Kim, In-Ju;Son, Joon-Sik
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.225-232
    • /
    • 2004
  • Recently, there has been a rapid development in computer technology, which has in turn led to develop the automated welding system using Artificial Intelligence (AI). However, the automated welding system has not been achieved duo to difficulties of the control and sensor technologies. In this paper, the classification of the optimized bead geometry such as bead width, height penetration and bead area in the Gas Metal Arc (GMA) welding with fuzzy logic is presented. The fuzzy C-Means algorithm (FCM), which is best known an unsupervised fuzzy clustering algorithm is employed here to analysis the specimen of the bead geometry. Then the quality of the GMA welding can be classified by this fuzzy clustering technique and the choice for obtaining the optimal bead geometry can also be determined.

  • PDF

THE USE OF NEURAL NETWORK TECHNOLOGIES TO DETERMINE WELDING

  • Kim, Ill-Soo;Jeong, Young-Jae;Park, Chang-Eun;Sung, Back-Sub;Kim, In-Ju;Son, Jon-Sik;Yarlagadda, Prasad K.D.V.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.301-306
    • /
    • 2002
  • This paper presents the use of the neural network technology to establish a mathematical model for predicting bead geometry (top-bead width, top-bead height, back-bead width and back-bead height) for multi-pass welding, and understand relationships between process parameters and bead geometry for robotic GMA welding process. Using a series of robotic arc welding, additional multi-pass butt welds were carried out in order to verify the performance of the developed neural network model. The results show that not only the proposed model can predict the bead geometry with reasonable accuracy and guarantee the uniform weld quality, but also the neural network model could be better than the linear and curvilin ear equations developed from Lee [8].

  • PDF

A Study on Real-time Control of Bead Height and Joint Tracking Using Laser Vision Sensor

  • Kim, H. K.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.30-37
    • /
    • 2004
  • There have been continuous efforts on automating welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, a vision system is constructed and using this, the 3 dimensional geometry of the bead is measured on-line. For the application as in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

  • PDF

Mathematical Models for Optimal Bead Geometry for GMA Welding Process

  • Park, C.E.;Li, C.S.;Kim, I.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.8-16
    • /
    • 2003
  • A major concern in Gas Metal Arc (GMA) welding process is the determination of welding process variables such as wire diameter, gas flow rate, welding speed, arc current and welding voltage and their effects on the desired weld bead dimensions and shape. To successfully accomplish this objective, 81 welded samples from mild steel AS 1204 flats adopting the bead-on-plate technique were employed in the experiment. The experimental results were used to develop a mathematical model to predict the magnitude of bead geometry as follows; weld bead width, weld bead height, weld bead penetration depth, weld penetration shape factor, weld reinforcement shape factor, weld bead total area, weld bead penetration area, weld bead reinforcement area, weld bead dilution, length of weld bead penetration boundary and length of weld bead reinforcement boundary, and to establish the relationships between weld process parameters and bead geomery. Multiple regression analysis was employed for investigating and modeling the GMA process and significance test techniques were applied for the interpretation of the experimental data.

  • PDF

A DEVELOPMENT OF MATHEMATICAL MODELS FOR PREDICTION OF OPTIMAL WELD BEAD GEOMETRY FOR GMA WELDING (GMA 용접에 최적의 용접비드 형상을 예측하기 위한 수학적 모델 개발)

  • 김일수
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.118-127
    • /
    • 1997
  • With the trend towards welding automation and robotization, mathematical models for studying the influence of various variables on the weld bead geometry in gas metal arc (GMA) welding process are required. Partial penetration, single-pass bead-on-plate welds using the GMA welding process were fabricated in 12mm mild steel plates employed four different process variables. Experimental results has been designed to investigate the analytical and empirical formulae, and develop mathematical equations for understanding the relationship between process variables and weld bead geometry. The relationships can be usefully employed not only for open loop process control, but also for adaptive control provided that dynamic sensing of process output is performed.

  • PDF

A Study on Real-time Control of Bead Height and Joint Tracking (비드 높이 및 조인트 추적의 실시간 제어 연구)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.71-78
    • /
    • 2007
  • There have been continuous efforts to automate welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, and using this, the 3 dimensional geometry of the bead is measured in real time. For the application in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

A study on mathematical modeling and heat transfer analysis to predict weld bead geometry in horizontal fillet welding (수평필릿용접의 용접부 형상을 예측하기 위한 수학적 모델링 및 열전달 해석에 관한 연구)

  • 문형순;나석주
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.58-67
    • /
    • 1996
  • The horizontal filet welding is prevalently used in heavy and ship building industries to join the parts. The phenomena occurring in the horizonal fillet welding process are very complex and highly non-linear, so that its analysis is relatively difficult. Furthermore, various kinds of weld defect such as undercut, overlap, porosity. excess weld metal and incomplete penetration can be induced due to improper welding conditions. Among these defects, undercut, overlap and excess weld metal appear frequently in horizontal filet welding. To achieve a satisfactory weld bead geometry without weld defects, it is necessary to study the effect of welding conditions in the weld bead geometry. For analyzing the weld bead geometry with and without weld defects in horizontal fillet welding, a mathematical model was proposed in conjunction with a two-dimensional heat flow analysis adopted for computing the melting tone in . base metal. The reliability of the proposed model was evaluated through experiments. which showed that the proposed model was very effective for predicting the weld bead shape with or without weld defects in horizontal fillet welding.

  • PDF