• Title/Summary/Keyword: Bead appearance

Search Result 43, Processing Time 0.016 seconds

Weldability and Weld Strength of Underwater Welds of Domestic Structural Steel Plates (國산構造용 鋼板 의 水中熔接性 과 熔接强度 特性)

  • 오세규;남기우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.263-269
    • /
    • 1983
  • Underwater welding by a gravity arc welding process was investigated by using six types of coated electrodes and SM41A steel plates of 10 mm thickness as base metal and it was ascertained that this process may be put to practical use. Main results obtained are summarized as follows: 1. Angle of electrode affects no influence on bead appearance and the proper range of welding current and diameter of electrode for the high titanium oxide type is relatively wider than that for the ilmenite type. And the lime titania type, high titanium oxide type and ilmenite type of domestic coated arc welding electrodes of .phi.4 mm could attain the soundest underwater welded joints which contain no welding imperfection. 2. According to macro-structure, micro-structure and hardness distribution inspectionson underwater welded joint, the area between the HAZ and the surface of the weld in neighbourhood of the bond has the maximum hardness value. The structure of these parts is martensite and bainite. Other parts contain mocro-ferrite, micro-pearlite structure, which contain soundness of welded joint free from weld imperfection. 3. On consideration of both tensile strength of more than 100% joint efficiency and sufficient impact value, the welding condition which can get optimal welding strength is heat input of 1,400-1,500 J/mm, current of 200-215 ampere (voltage of 32-33 volts) in the case of lime titania type electrode. 4. Underwater welding strength (tensile strength, impact strength) depends on heat input (or current) quantitatively and they have the relationship of parabolic function. Each experimental equation has a high reliability and its percent of mean error is 4.14%. 5. It is suggested that the optimal design of weld strength by welding condition (current, heat input) could be utilized for a quality control of underwater welding.

A Characteristics on the Ancient Glass Beads Excavated from the Site of Hapgang-ri in Sejong, Korea (세종 합강리 유적 출토 고대 유리구슬의 특성 연구)

  • kim, Eun a;Kim, Gyu Ho;Kang, Ji Won;Yun, Cheon Su
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.405-420
    • /
    • 2020
  • A convergence research was conducted on glass beads excavated at the ruins of Hapgang-ri, Sejong, using the archeology and conservation approach. The period of appearance of Jugu Towangmyo in the ruins of Hapgang-ri can be estimated to begin in the late 2nd century; for Jugu Towangmyo No. 15, the period spans from the late 2nd to early 3rd century. Form, color, and manufacturing techniques of complete glass beads were examined, and the cross-sections and chemical composition of 16 samples were observed. Based on these analyses, the glass beads were divided into blue, purple, and red colors. The blue-colored beads could be further sub-divided based on their gloss and brightness; in contrast, the red-colored beads were highly uniform with regard to these parameters. Based on the stripe and bubble arrangement on the surface of the glass beads, their drawing technique was identified. Traces of heat treatment or polishing were observed at the ends of the beads. According to their chemical composition, the 16 samples were classified into 3 potash glass and 13 soda glass groups; in the latter, the properties of the stabilizers were divided according to the blue and red bead colors. The stabilizers of the red beads are unique in that they allow the distinction among beads excavated in other areas in South Korea owing to their compositional differences. Colorants in blue- and red-colored beads are cobalt (containing MnO), and copper and iron, respectively.

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF