• Title/Summary/Keyword: Bead Width

Search Result 158, Processing Time 0.022 seconds

Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts (기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석)

  • Kim, D.A.;Lee, K.K.;Ahn, D.G.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

Study of Welding Toughness Characteristics on the Root-pass Welding Process of High Tensile Steel at Tower Production for Offshore Wind Power Generation (해상풍력 발전용 타워 제작시 고장력강재의 초층용접에 관한 용접특성 연구)

  • Jung, Sung-Myoung;Kim, Ill-Soo;Kim, Ji-Sun;Na, Hyun-Ho;Lee, Ji-Hye
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.349-353
    • /
    • 2012
  • As the world wind energy market grows rapidly, the productions of wind power generation equipment have recently increased, but manufacturers are not able meet this requirement. Particularly offshore wind energy industry is one of the most popular renewable energy sectors. To generalize welding processes, the welding automation is considered for steel structure manufacturing in offshore wind energy to get high quality and productivity. Welding technology in construction of the wind towers is depended on progress productivity. In addition, the life of wind tower structures should be considered by taking account of the natural weathering and the load it endures. The root passes are typically deposited using Gas Tungsten Arc Welding(GTAW) with a specialized backing gas shield. Not only the validation consists of welders experienced in determining the welding productivity of the baseline welding procedure, but also the standard testing required by the ASME section IX and API1104 codes, toughness testing was performed on the completed field welds. This paper presents the welding characteristics of the root-pass welding of high tensile steel in manufacturing of offshore wind tower. Based on the result from welding experiments, optimal welding conditions were selected after analyzing correlation between welding parameters(peak current, background current and wire feed rate) and back-bead geometry such as back-bead width(mm) and back-bead height performing root-pass welding experiment under various conditions. Furthermore, a response surface approach has been applied to provide an algorithm to predict an optimal welding quality.

A Study on Pulsed Nd:YAG Laser Welding of Electron Gun in Braun Tubes (I) - Characteristics of Beam Output Energy and Optical Parameters - (브라운관 전자총 부품의 펄스 Nd:YAG레이저 용접에 관한 연구 (I) - 빔의 출력특성과 광학변수 -)

  • 김종도;하승협;조상명
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.525-534
    • /
    • 2002
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two roles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets. The deepest penetration depth is gotten on focal position, and a "bead transition" occurred with a slight displacement of focal position relative to the workpiece surface and the absorption rate of the laser energy is affected by the shape factor of the workpiece. When we changed the incident angle of laser beam, the penetration depth was decreased a little with increasing of the incident angle, and the bead width was increased. The spattering was prevented by considering laser beam energy and incident angle.ent angle.

Investigation of Crack Healing and Optimization of Microbe Carrier for Microbial Self-healing of Concrete Crack (미생물 기반 콘크리트 자기치유를 위한 미생물 담체 최적화 및 균열치유성능 분석)

  • Yun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.62-67
    • /
    • 2024
  • In this paper, we developed and optimized a chitosan-based polymer microbial bead carrier that is cell-friendly, has a high moisture absorption rate, and effectively provides the conditions for microbial biomineral formation as an optimal microbial carrier that protects microorganisms in concrete, and evaluated the self-healing performance of mortar using it. In order to incorporate circular-shaped microbial endospores, a circular-shaped microbial bead carrier was developed by combining chitosan and alginate polymers, and the amount of calcium carbonate produced could be actively controlled by adjusting the composition of the carrier. The amount of biominerals formed and the size of crystals were maximized in the hydrogel bead carrier containing chitosan, and in the case of mortar cracks using this, it was confirmed that self-healing of cracks with a maximum crack width of 0.3mm was achieved within 96 hours after crack generation.

Effect of different types of biochar on the growth of Chinese cabbage (Brassica chinensis)

  • Lee, Jae-Han;Seong, Chang-Jun;Kang, Seong-Soo;Lee, Ho-Cheol;Kim, Soo-Hun;Lim, Ji-Sun;Kim, Jae-Hong;Yoo, Joun-Hyuk;Park, Jung-Hyun;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.197-203
    • /
    • 2018
  • Biochar is the carbon solid produced through the pyrolysis of a biomass from organic sources such as agricultural waste, animal manure, and sludge under limited or anaerobic conditions. Biochar has the effect of reducing greenhouse gases through the carbon sequestration method; additionally, biochar is known to function as a soil amendment. This experiment was conducted to evaluate the application of biochar on the growth characteristics of Chinese cabbage at Chungnam National University in Daejeon, Korea. The Chinese cabbage was grown for 50 days in a glasshouse in pots. A pruning branch was used to produce the bead and pellet forms of biochar through pyrolysis. The biochar was added to the soil at 0, 2, and 5% by weight. The Chinese cabbage with the 2% treatment of the bead form of biochar had the highest fresh weight ($149.43{\pm}15.92g\;plant^{-1}$) which was increased by 10% compared to the control ($136.91{\pm}31.46g\;plant^{-1}$). Moreover, for the 5% treatment of the bead form of biochar ($60.91{\pm}9.82g\;plant^{-1}$), the growth decreased by 57% compared to the control. As the content of the bead form of biochar increased, the shoot dry weight, leaf number, leaf length and lead width that appeared decreased. An increase in the total organic matter, Avail. $P_2O_5$, Ex. cation and EC was observed when the biochar content was increased. Our results support the application of 2% biochar in the bead form for increased growth of Chinese cabbage.

The Study on the Design and Manufacturing of Combined Die for Both Sides of Front Fender (Front Fender LH/RH 일체 금형설계 및 제작에 관한 연구)

  • Jung, Hyo-Sang;Lee, Seoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.24-30
    • /
    • 1999
  • In the automobile development, press tool design and manufacturing are very difficult and need high cost experienced workers. Therefore, we concerned ourselves in the cost down and easy manufacturing. In this research, we have developed a tool for LH/RH of the front fender, which had difficulty in forming. We have carried out the drawing analysis by Pam-stamp and CATIA modeling. Finally, we get the optimal design parameter. As a result of try out, we found out the optimal width and margin at the center line for tool design. Also, in order to get good results we have to intaglio margin in the part of the wheel house and utilize double bead on every side except corner.

  • PDF

The Characteristic of Fatigue Crack Propagation of Laser Welded Sheet Metal for Automobile Body Panel (자동차 차체제작용 레이저 용접 판재의 피로균열 전파 특성)

  • 곽대순;권윤기;오택열;이경엽;강연식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.181-189
    • /
    • 2001
  • For the Tailor Welded Blank sheet used fur automobile body panel, the characteristics of fatigue crack propagation behavior were studied. The thickness of specimen was machined to be same (0.9+0.9mm) and different (0.9+2.0mm). As a base test, mechanical properties around welding zone were examined. The results indicated that there were no significant decreases in mechanical properties, but hardness around welding bead is 2.3 times greater than base material. The crack propagation rate was noticeably decreased around welding line and rapidly increased as it passed by welding line. Reviewing the shape of the crack propagation, crack width around welding line was wide around the welding zone due to retardation of crack growth, but it became narrow passing welding line due to decreased toughness. Elasto-Plastic analysis was performed by finite element analysis fur explaining the test results.

  • PDF

A Study on On-Line Quality Monitoring Using Arc Light in Gas Metal Arc Welding (GMAW에서 아크 빛을 이용한 실시간 용접품질 모니터링에 관한 연구)

  • 조택동;양상민
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.82-86
    • /
    • 2000
  • Gas metal arc welding(GMAW) is regarded as one of the best candidate for welding automation in industrial joining application. It is important to monitor the weld quality for the high performance weld automation. In GMAW, weld quality is closely related to arc stability especially. In this paper, arc light signal is measured and spectrum analyzed to the detect the variation of the weld quality. The FFT of the signal showed that the amplitude variance of FFT power spectrum was very large in poor weld process such as the decrease of weld bead width and height. The results show that it is possible to detect the weld defect position in weld process.

  • PDF

Effect of Welding Variables for EBW Process in AISI 4130 by Taguchi Method (다구찌 방법을 이용한 AISI 4130재료에서 EBW공정의 용접 변수 영향)

  • Kim, Won-Hoon
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.66-77
    • /
    • 1997
  • In the present work, Taguchi method for electron beam welding(EBW) process in AISI 4130 steel plate has been adopted for investigating the contribution of effect of welding variables. $A L_8(2^7)$ orthogonal array is adopted to obtain the effect of adjustment parameters. The adjustment parameters consist of accelerating voltage, beam current, travel speed and focus currrent. And the quality features selected for the EBW process are bead width of weldment, reinforcement, penetration depth, undercut and area of weld metal. Variance analysis is performed in order to check the effect of adjustment parameters on EBW. The mechanical properties of electron beam welded joints for each heat treatment conditions are investigated in comparison with those of base metal, especially from the view point of tensile and impact properties.

  • PDF

Effects of Nd:YAG Laser Welding Parameters on Fatigue Life of Lap Joint Structure in Stainless Steel (스테인리스강의 Nd:YAG 레이저 겹치기 용접부 피로수명에 미치는 용접변수의 영향)

  • Kim, Yong;Yang, Hyeon-Seok;Park, Gi-Yeong;Lee, Gyeong-Don
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.181-183
    • /
    • 2007
  • Experimental analysis was carried out to understand the fatigue phenomena of different thickness stainless steel overlap joining structure by Nd:YAG laser welding. The fatigue life was obtained through fatigue tests with the various levels of applied load. The fatigue life is related with the parameters such as gap condition and penetration depth through experiment. As the results, tensile and fatigue strength were proportional in heat input level and bead width was identified the major factor for joining strength. Also the fatigue life were decreased depend on gap condition, it was more affected at the low load level.

  • PDF