• Title/Summary/Keyword: Beacon node

Search Result 77, Processing Time 0.022 seconds

Bio-MAC: Optimal MAC Protocol for Various Bio-signal Transmission in the WBSN Environment (Bio-MAC: WBSN환경에서 다양한 생체신호 전송을 위한 최적화된 MAC Protocol)

  • Jang, Bong-Mun;Ro, Young-Sin;Yoo, Sun-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.423-425
    • /
    • 2007
  • In this paper, Medium Access Control(MAC) protocol designed for Wireless Body area Sensor Network(Bio-MAC) is proposed, Because in WBSN, the number of node is limited and each node has different characteristics. Also, reliability in transmitting vital data sensed at each node and periodic transmission should be considered so that general MAC protocol cannot satisfy such requirements of biomedical sensors in WBSN. Bio-MAC aims at optimal MAC protocol in WBSN. For this, Bio-MAC used Pattern -SuperFrame, which modified IEE E 802.15.4-based SuperFrame structurely. Bio-MAC based on TDMA uses Medium Access-priority and Pattern eXchange -Beacon method for dynamic slot allocation by considering critical sensing data or power consumption level of sensor no de etc. Also, because of the least delay time. Bio-MAC is suitable in the periodic transmission of vital signal data. The simulation results demonstrate that a efficient performance in WBSN can be achieved through the proposed Bio-MAC.

  • PDF

Query Technique for Quick Network Routing changing of Mobility Sensor Node in Healthcare System (헬스케어 시스템에서 이동형 센서노드의 신속한 네트워크 라우팅 변화를 위한 질의기법)

  • Lee, Seung-chul;Kwon, Tae-Ha;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.517-520
    • /
    • 2009
  • Healthcare application system has been actively researched to apply WSN technology to healthcare area with a mobile sensor node of low cost, low power, and small size. Sensor node has the problem for transmission range of RF power and time delay of the wireless routing connectivity between sensor nodes. In this paper, we proposes a new method utilizing mobile sensor nodes with relay sensor nodes for quick network routing changing using query technique in healthcare system. A query processor to control and manage the routing changing of sensor nodes in a wireless sensor network was designed and implemented. The user's PC transmits the beacon message which will change the quick link routing according to activity status of patient in wireless sensor network. We describe the implementation for query protocol that is very effective of power saving between sensor nodes.

  • PDF

A localization method for mobile node in sensor network (센서 네트워크에서 이동 가능한 노드에 대한 위치 인식 방법)

  • Kwak, Chil-Seong;Jung, Chang-Woo;Kim, Jin-Hyun;Kim, Ki-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.385-390
    • /
    • 2008
  • The Study of environment monitoring through huge network of wireless sensor node is worked with activity. The sensor nodes must be very small, light and low cost. The localization which may determine where a given node is physically located in a network is one of the quite important problems for wireless sensor network. But simple localization method is required as excluding the usage of GPS(Global Positioning System) by the limit condition such as the node size, costs, and so on. In this paper, very simple method using connectivity for the outdoor RF communication environment is proposed. The proposed method is demonstrated through simulation.

Dynamic ATIM Power Saving Mechanism(DAPSM) in 802.11 Ad-Hoc Networks (802.11 Ad-Hoc 네트웍에서 Power Save Mechanism을 개선한 DAPSM 알고리즘)

  • Park, Jae-Hyun;Lee, Jang-Su;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.475-480
    • /
    • 2007
  • Recently, wireless networking devices that depend on the limited Battery and power-saving of wireless hosts became important issue. Batteries can provide a finite amount of energy, therefore, to increase battery lifetime, it is important to design techniques to reduce energy consumption by wireless hosts. This paper improved power saying mechanism in Distributed Coordination Function(DCF) of IEEE 802.11. In the IEEE 802.11 power saving mechanism specified for DCF, time is divided into so-called beacon intervals. At the start of each beacon interval, each node in the power saving mode periodically wakes up during duration called the ATIM Window. The nodes are required to be synchronized to ensure that all nodes wake up at the same time. During the ATIM window, the nodes exchange control packets to determine whether they need to stay awake for the rest of the beacon interval. The size of the ATIM window has considerably affected power-saving. This paper can provide more power-saving than IEEE 802.11 power saving mode because ATIM window size is efficiently increased or decreased.

A Design and Implementation of Compensation Algorithm for Radiodetermination Error using Determination Coordinator Value of Equivalent Distance Rate (균등거리비율의 측위좌표 값을 이용한 무선측위 오차 보정 알고리즘의 설계 및 구현)

  • Kwon, Seong-Ki;Lee, Dong-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9A
    • /
    • pp.852-858
    • /
    • 2010
  • In this paper, the compensation algorithm for radiodetermination error using a concept of determination coordinator value of equivalent distance rate (CADE) is proposed, and the performance of the proposed algorithm is analyzed. As a result of the experiments, CADE improves the performance of the algorithm accuracy about 37.5% and 69.8% each in the inside and outside of 4 beacon nodes. Furthermore, the CADE is 76.3% excellent enough to compensate 2m or more of the radiodetermination error. It also confirms that CADE can be adapted to the wide range by installing only 4 beacon nodes according to the excellence of compensation performance besides the ranges of 4 beacon nodes. From the results, it is strongly considered that the proposed algorithm CADE can be used to the performance enhancement of radiodetermination systems using SDS-TWR.

Design of A-GBSR Protocol Using Beacon Message in 802.11p WAVE (802.11p WAVE에서 비콘메시지를 이용한 A-GBSR 프로토콜 설계)

  • Jeong, Seon-Mi;Kim, Hyun-Ju;Kim, Chang-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1554-1560
    • /
    • 2015
  • 802.11p WAVE is the next-generation wireless communication that can make Ad-hoc network communication possible for Vehicle-to-Vehicle. GBSR protocol, one of the 802.11p WAVE protocols, mainly focuses on improvements in networks that have a tendency to disconnect. However, it does not consider the transmission time and velocity of a packet thus, there is a disadvantage of there being a delay in the transmission velocity, in urgent situations like car accidents, emergency patients transportation and crimes. In this paper, we proposed A-GBSR protocol for transmission of a packet to mobile node which has a high speed through the improved beacon message and Adaptive Neighbor list Management that are considering of the GBSR protocol transmission velocity.

Cluster-Based Routing Mechanism for Efficient Data Delivery to Group Mobile Users in Wireless Ad-Hoc Networks (그룹 이동성을 가지는 모바일 사용자들 간의 효율적인 데이터 공유를 위한 클러스터 기반 그룹 라우팅 기법 메커니즘)

  • Yoo, Jinhee;Han, Kyeongah;Jeong, Dahee;Lee, HyungJune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.1060-1073
    • /
    • 2013
  • In this paper, we present a cluster-based routing scheme for efficiently delivering data to group mobile users by extracting and clustering mobile user group simply from beacon message information in wireless ad-hoc networks. First, we propose an online-clustering mechanism that uses a local neighbor table on each node by recursively transmitting to neighbor nodes, and forms a group table where a set of listed nodes are classified as group members, without incurring much overhead. A node that appears the most frequently from neighbor tables throughout the network is selected as the cluster-head node, serving as a data gateway for the intra-cluster. Second, we design an inter-cluster routing that delivers data from stationary data sources to the selected cluster-head node, and a intra-cluster routing to deliver from the cluster-head node to users. Simulation results based on ns-2 in the ad-hoc networks consisting of 518 stationary nodes and 20 mobile nodes show that our proposed clustering mechanism achieves high clustering accuracy of 96 % on average. Regarding routing performance, our cluster-based routing scheme outperforms a naive one-to-one routing scheme without any clustering by reducing routing cost up to 1/20. Also, our intra-cluster routing utilizing a selected cluster-head node reduces routing cost in half as opposed to a counterpart of the intra-cluster routing through a randomly-selected internal group member.

Flooding Level Cluster-based Hierarchical Routing Algorithm For Improving Performance in Multi-Hop Wireless Sensor Networks (멀티홉 무선 센서 네트워크 환경에서 성능 향상을 위한 플러딩 레벨 클러스터 기반 계층적 라우팅 알고리즘)

  • Hong, Sung-Hwa;Kim, Byoung-Kug;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3B
    • /
    • pp.123-134
    • /
    • 2008
  • In this paper, a routing algorithm for wireless sensor networks is proposed to improve the efficiency of energy consumption in sensor nodes. Each sensor node has the value called ‘Flooding Level’ obtained through the initial flooding from a sink node instead of sending beacon messages in multi-hop sensor field. This value can be used for guaranteeing the sensor nodes to connect with a sink node and determining the roles of cluster-head and cluster-gateway node efficiently and simply during the clustering. If different algorithms are added to our protocol, it will work better in the side of energyefficiency. This algorithm is evaluated through analysis and extensive simulations.

A New Framework of 6lowpan node for Neighboring Communication with Healthcare Monitoring Applications

  • Singh, Dhananjay;Lee, Hoon-Jae;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.281-286
    • /
    • 2009
  • The proposed technique uses cyclic frame structure, where three periods such as beacon period (BP), mesh contention access period (MCAP) and slotted period (SP) are in a data frame. This paper studies on a mechanism to allow communication nodes (6lowpan) in a PAN with different logical channel for global healthcare applications monitoring technology. The proposed super framework structure system has installed 6lowpan sensor nodes to communicate with each other. The basic idea is to time share logical channels to perform 6lowpan sensor node. The concept of 6lowpan sensor node and various biomedical sensors fixed on the patient BAN (Body Area Network) for monitoring health condition. In PAN (hospital area), has fixed gateways that received biomedical data from 6lowpan (patient). Each 6lowpan sensor node (patient) has IP-addresses that would be directly connected to the internet. With the help of IP-address service provider can recognize or analyze patient data from all over the globe by the internet service provider, with specific equipments i.e. cell phone, PDA, note book. The NS-2.33 result shows the performance of data transmission delay and data delivery ratio in the case of hop count in a PAN (Personal Area Networks).

  • PDF

A Study of Mobile IPv6 Fast Handover Algorithms in WLAN Environment (무선랜 환경에서 Mobile IPv6 Fast Handover 알고리즘에 관한 연구)

  • 이재황;김평수;김영근
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.509-512
    • /
    • 2003
  • 본 논문은 무선랜 환경에서 Mobile IPv6 Node가 이동 시에 발생하는 Handover Latency 를 줄이기 위한 새로운 알고리즘을 제안한다. 현재 Mobile IPv6 Fast Handover Protocol 은 Layer2 에서의 Handover 의 도움을 전제로 하기 때문에 실제 구현상에서 Real-time 이나Delay 에 민감한 Application 에 적용하기 어렵다. 이 문제를 해결하기 위해 무선랜에서 사용하는 Beacon 신호를 이용한 Dominant NAR 알고리즘을 적용하여 MIPv6 Fast Handover 과정을 선 처리하여 Handover Latency를 줄이고자 한다.

  • PDF