• Title/Summary/Keyword: Beach Evolution

Search Result 32, Processing Time 0.03 seconds

A Study on the Coastal Development Model Due to the Construction of Artificial Island (인공섬건설에 따른 해안선변형모델에 관한 연구)

  • 오세욱;민병형;김기철;김재중
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.133-142
    • /
    • 1992
  • Beach evolution is of the most important problem is the coastal engineering. Especially, the structure construction through reclamation in the shallow water region nesar the beach will cause many severe problems around the structure. Beach evolution due to the construction of an artificial island in this study was studied using wave transform model and associated of an artificial island in this study was studied using wave transform model and associated sediment transport model. Numerical simulation of the model was applied to the Kwangan beach using the data of waves and shoreline of the area. The combined wave transform model and beach evolution model showed good results. The results show a breakwater will be needed to prevent severe erosion near the eastward Kwangan beach when construction an artificial island in the Suyong Bay. Good results of the study also suggest that the present model can be more widely applied to the prediction of beach evolution.

  • PDF

A Study on the Numerical Model for Predicting Shoreline Changes (해안선 변형 예측에 대한 수치모델 연구)

  • 박정철;한건모;김재중
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.156-161
    • /
    • 1993
  • Structures built in the coastal area often cause unexpectedly severe shoreline change on the adjacent beaches. Therefore, beach evolution is one of the most important problem in the coastal engineering. Beach evolution in the coastal area consisted of wave transform model and sediment transport model. Ebersoale's elliptic mild slope equation which considered the effect of combind wave refraction and perline and Dean's one line theory for the sediment transport model were used in this study. Kwangan beach was selected as study area and field observations were done. Numerical simulation for beach evolution in the Kwangan beach was performed and shoreline change predictions were suggested as results.

  • PDF

Predictive model for wave-induced currents and 3D beach evolution based on FAVOR Method

  • Kuroiwa, Masamitsu;Abualtayef, Mazen;Takada, Tetsushi;Sief, Ahmed Khaled;Matsubara, Yuehi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.68-74
    • /
    • 2010
  • The development of a numerical model using the fractional area/volume obstacle representation (FAVOR) method for predicting a nearshore current field bounded by complicated geometric shapes, and a three-dimensional (3D) beach evolution was described in this article. The 3D model was first tested against three cases to simulate the nearshore current fields around coastal structures, a river mouth, and a large scale cusp bathymetry. Then, the morphodynamic model tests, which are adopting the nearshore current model, were applied for the computations of beach evolution around a detached breakwater and two groins. It was confirmed that the presented model associated with the FAVOR method was useful to predict the nearshore current field in the vicinity of the complicated geometric shapes. Finally, the model was applied to a tombolo formation in a field site of Kunnui fishery port, which is located in Hokkaido, Japan.

Numerical Analysis on the Beach Erosion Prevention Capability of Submerged Breakwaters (잠제의 해빈침식 방지 기능에 관한 수치적 연구)

  • Kim, In-Chul;Yoon, Jong-Sung
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.881-886
    • /
    • 2006
  • The purpose of this research is to examine the beach erosion prevention capability of submerged breakwaters under wave energy condition. To accomplish this objective, the computational domain was divided into two do-mains : the large and the detailed domain for the Song-Do beach. For each computational domain, numerical models for calculating transformation, wave induced current and beach erosion were used and also these numerical models were carefully applied to three experimental cases such as 1) the present beach condition, 2) the condition for which submerged breakwaters are installed about 240m from the shoreline of beach enlarged by artificial nourishments. The results of this research show that if storm waves attack the present beach, the erosion occurs widely all over the beach. However, when the submerged breakwaters are installed in addition to the artificial nourishments, storm waves can be adequately controlled and strong wave induced currents occur only around the submerged breakwaters resulting in the beach evolution appearing locally only at the western end of the beach.

Numerical Prediction of Beach Topographical Evolution (해빈지형변형(海濱地形變形)의 수식예측모형(數式豫測模型))

  • Lee, Jong Kyu;Lee, Jong In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.177-188
    • /
    • 1991
  • The littoral drift in the nearshore zone occurs mainly due to wave action and nearshore currents. Beach topotraphical evolution model presented in this study shows the possibility which can be applied to the prediction of beach deformation over short time interval, associated with the construction of coastal structures. The 3-dimensional beach evolution model, based on Watanabe's equation and Deguchi's flux model, is developed and consists of three submodels of wave transformation, rip-currents, and beach deformation. This model is applied to the several cases with different conditions and compared with the results of Watanabe's numerical model. In addition, the effects of parameters involved are discussed.

  • PDF

The Development of a Model to Predict Beach Evolution (해빈변형 예측 모델의 개발)

  • 안수한;김인철
    • Water for future
    • /
    • v.21 no.3
    • /
    • pp.299-307
    • /
    • 1988
  • A model is developed to predict the long-term beach evolution near the long groin considering the combined effects of variation of sea level, wave refraction and diffraction. A numerical solution for this problem is solved by considering the equation as a system subject to the boundary condition for longshore transport rate. One possible method is the centered Crank-Nicolson type implicit scheme. The results which ard obtained by applying this numerical model at Songdo beach, Pohang are as follows. Owing to the approximation used in the calculation of the refraction and diffraction coefficients, the discrepancy between the predicted and actual shoreline occurs to the interior of long groin. However, the shape of shoreline at the exterier of long groins agrees well.

  • PDF

Movable-Bed Modeling Law for Beach Response Experiments Using Equilibrium Beach Profile Formula (평형해빈단면식을 이용한 해빈반응실험에 대한 이동상 모형법)

  • Kim, Jin Hoon;Kim, In Ho;Lee, Jung Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.351-360
    • /
    • 2018
  • The construction of large scale harbor structures at Maengbang beach, which is located on the eastern coast of Korea, is of great concern because it may cause disastrous beach erosion in the vicinity. Therefore, a hydraulic model experiment was conducted to examine the morphological changes after such construction. The water depth was scaled using the method of Van Rijn (2010), which is a well-known scale law, but the results appeared to be overestimated. The present study developed a new scale law that applies an equilibrium beach profile formula to scale the model evolution to the prototype scale. When compared with survey data observed at Maengbang beach, the proposed method showed better agreement than the method of Van Rijn (2010).

Coastline Evolution Analysis and Forecast due to the Construction of Groin at Heoya-River Mouth Area (회야강 하구방사제 건설에 따른 진하해수욕장 해안선 변화분석 및 예측)

  • Kim, Seong-Deuk;Kang, Kyung-Ho;Park, Hae-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.28-33
    • /
    • 2008
  • From the 1997 to January, 2004, a groin 156m long was constructed at the mouth of the Heoya river-mouth as a protection and barrier. To understand the changes to Jinha beach from the blockade of the river mouth, several aerial photographs, etc., were compared, which showed that the changes were significant. Comparing these results to the state of the area before construction of the groin, the blockade of the river was relaxed, but the formation of the tombolo, in the middle groin area was accelerated and the total Jinha beach erosion and especially the erosion of the southern part of Jinha beach was developed. But according to statements by residents and some current documents, the blockade of the Heoya-river mouth is still underway at the surrounding areas of the groin and chronic dredged sand has been used for littoral nourishment at the northern part of the middle groin and on Jinha beach. The result of numerical simulation based on the present state shows that if this sort of dredging is stopped, the sand accumulation will progress near the river mouth groin and the existing tombolo at the middle groin will progress to the north and severe erosion will occur at the southern coastline near the middle groin and the farthest southern part of Jinha beach, and Jinha beach itself will experience a gradual erosion. The main reason for these erosions should be the typhoons that are happening during the summer season. To provide protection from these kinds of undesirable erosions, a total of 23 numerical simulations have been done. It has been shown that submerged breakwaters at the front area of the beach will be efficient to protect from main beach erosion, but there should be alternative proposals for the influence of the river mouth blockade.

Evolution and Sediment Facies of the Namdaecheon Spit, Yang-Yan Coast East Sea of korea (강원도 동해안 양양읍 남대천 하고 Spit Beach에 관한 연구)

  • 박용안
    • The Korean Journal of Quaternary Research
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • 동해안의 강원도 양양읍 남대천 하구에 발달한 spit beach의 지형적변화(1979∼ 1996) 는 outlet의 위치변화와 해안선 모습의 변화로 규명되었는바 일차적인 변화는 해안에 평행한 spit의 성장이며 이차적인 변화는 spit폭의 변화(overwash across sedimentation)라 고 밝혀졌다. 해빈환경의 소환경(subenvironment)으로서 swash zone과 berm crest는 각각 의 특징적 퇴적상(조직매개변수)으로 구분되는바 이에 관한 분석결과가 기술되었다.

Astudy on the classification of Eastern Coastal line of korea from the view point of Prevailing Wave Direction (탁월파랑에 의한 동해안선 분류의 조사연구)

  • 이원환;이정태
    • Water for future
    • /
    • v.11 no.1
    • /
    • pp.39-46
    • /
    • 1978
  • The approaching deep water wave heights and directions affect the wave energy which is carried to the coast. By studing the relations between the longshore wave energy theory and the evolution of coastline, writer can arrive following conclusion. The longshore lottoral drifting affects to a great deal the formation of the coast, and by investigating on the eastern coastal geomophorogy of korea, the theory was proued as a true and made it possible to an approaching to the subdivided classification of eastern coast of lorea. That is to asy that angle taken by the level between the wave crest line of prevailing wave(NE) and the coastline was measured as less than 15#, and in the area neighboring the river which served as source of Sand parrticles, there are grand scale formation of sand beach expectable, in the other hand the formation of sand beach in case of $35^{\circ}{\leq}{\alpha }o{\leq}55^{\circ}$ which represents the vivid phenomena of longshore littoral drifting was proved not influencial but rather transformed into a rocky coast. Depending on the above facts the writer classified general shape of the coast affected by the vivid wave action into the following three, (1) The equilibrium beach. (2) Erosinal beach. (3) Geomophorogical beach, and made the sandy and rocky coast are subdivided as S-A.B.C. and R-DEF.

  • PDF