• Title/Summary/Keyword: BeO

Search Result 23,375, Processing Time 0.048 seconds

Chemical Stability Evaluation of Ceramic Materials for Liquid Cadmium Cathode (액체카드뮴음금용 세라믹 소재의 화학적 안정성 평가)

  • Ku, Kwang-Mo;Ryu, Hong-Youl;Kim, Seung-Hyun;Kim, Dae-Young;Hwang, Il-Soon;Sim, Jun-Bo;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • LCC (Liquid cadmium cathode) is used for electrowinning in pyroprocessing to recover uranium and transuranic elements simultaneously. It is one of the core technologies in pyroprocessing with higher proliferation resistance than a wet reprocessing because LCC-cell does not separate TRU from uranium. The crucible which holds the LCC is technically important because it should be nonconducting material to prevent deposition of metallic elements on the crucible outer surface. The chemical stability is also crucial factor to choose crucible material due to the strong reactivities of TRU and possible incorporation of Li metal during the operation. In this study, the chemical stabilities of four kinds of representative ceramic materials such as $Al_2O_3$, MgO, $Yl_2O_3$ and BeO were thermodynamically and experimentally evaluated at $500^{\circ}C$ with simulated LCC. The contact angle of LCC on ceramic materials was measured as function of time to predict chemical reactivity. $All_2O_3$ showed poorest chemical stability and the pores in BeO contributed to a decreases in contact angle. MgO and $Y_2O_3$ have superior chemical stability among the materials.

Thermal Evolution of BaO-CuO Flux as Sintering Aid for Proton Conducting Ceramic Fuel Cells

  • Biswas, Mridula;Hong, Jongsup;Kim, Hyoungchul;Son, Ji-Won;Lee, Jong-Ho;Kim, Byung-Kook;Lee, Hae-Weon;Yoon, Kyung Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.506-510
    • /
    • 2016
  • The eutectic melt of BaO-CuO flux is known to be a potential sintering aid for $Ba(Zr,Y)O_3$ (BZY) electrolyte for proton-conducting ceramic fuel cells (PCFCs). A density of BZY higher than 97% of theoretical density can be achieved via sintering at $1300^{\circ}C$ for 2 h using a flux composed of 28 mol% BaO and 72 mol% CuO. In the present study, chemical and structural evolution of BaO-CuO flux throughout the sintering process was investigated. An intermediate holding step at $1100^{\circ}C$ leads to formation of various impurity compounds such as $BaCuO_{1.977}$, $Ba_{0.92}Cu_{1.06}O_{2.28}$ and $Cu_{16}O_{14.15}$, which exhibit significantly larger unit cell volumes than the matrix. The presence of such secondary compounds with large lattice mismatch can potentially lead to mechanical failure. On the other hand, direct heating to the final sintering temperature produced CuO and $Cu_2O$ as secondary phases, whose unit cell volumes are close to that of the matrix. Therefore, the final composition of the flux is strongly affected by the thermal history, and a proper sintering schedule should be used to obtain the desired properties of the final product.

Analytical characterization of O3 samples prepared for investigation of tropospheric heterogeneous reactions

  • Kim, Mihyeon;Park, Jong-Ho
    • Analytical Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.212-217
    • /
    • 2022
  • In this study, ozone (O3) samples were prepared for investigating the heterogeneous reactions between O3 and tropospheric aerosols and were characterized by spectroscopic methods. O3 generated from an ozone generator was purified by selective adsorption on refrigerated silica gel, followed by transfer to a sample bulb. The amount of UV light (λ = 256 nm) absorbed by O3 was measured as a function of time at two different temperatures (room temperature and 50 ℃) and under different irradiation conditions. A correlation plot of 1/[O3] versus time showed that O3 decomposition follows the 2nd order reaction rate under a steady-state approximation. The initial concentration of O3, observed rate constants (kobs), and the half-life of O3 in the sample stored at room temperature were determined to be 2.74 [±0.14] × 1016 molecules·cm-3, 4.47 [±0.64] × 10-23 molecules-1·cm3·s-1, and 9.5 [±1.4] days, respectively. The evaluation of O3 stability under various conditions indicated that special care should be taken to prevent the exposure of the O3 samples to hightemperature environment and/or UV radiation. This study established a protocol for the preparation of highly purified O3 samples and confirmed that the O3 samples can be stored for a day after preparation for further experiments.

Semiconductor type micro gas sensor for $H_2$ detection using a $SnO_2-Ag_2O-PtO_x$ system by screen printing technique (스크린 프린팅 기법을 이용한 $SnO_2-Ag_2O-PtO_x$계 반도체식 마이크로 수소 가스센서에 관한 연구)

  • Kim, Il-Jin;Han, Sang-Do;Lee, Hi-Deok;Wang, Jin-Suk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2006
  • Thick film $H_2$ sensors were fabricated using $SnO_2$ loaded with $Ag_2O$ and $PtO_x$. The composition that gave the highest sensitivity for $H_2$ was in the weight% ratio of $SnO_2 : PtO_x : Ag_2O$ as 93 : 1 : 6. The nano-crystalline powders of $SnO_2$ synthesized by sol-gel method were screen printed with $Ag_2O$ and $PtO_x$ on alumina substrates. The fabricated sensors were tested against gases like $H_2$, $CH_4$, $C_3H_8$, $C_2H_5OH$ and $SO_2$. The composite material was found sensitive against $H_2$ at the working temperature $130^{\circ}C$, with minor interference of other gases. The $H_2$ gas as low as 100 ppm can be detected by the present fabricated sensors. It was found that the sensors based on $SnO_2-Ag_2O-PtO_x$ system exhibited the high performance, high selectivity and very short response time to $H_2$ at ppm level. These characteristics make the sensor to be a promising candidate for detecting low concentrations of $H_2$.

The Complexing Effect of $BaTiO_3\;for\;Bi_4Ti_3O_{12}$ on Layered Perovskite $Bi_4Ti_3O_{12}{\cdot}nBaTiO_3(n=1&2)$ Thin Films ($Bi_4Ti_3O_{12}{\cdot}nBaTiO_3(n=1&2)$ 박막에서 $Bi_4Ti_3O_{12}$ 에 대한 $BaTiO_3$의 복합효과)

  • 신정묵;고태경
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1130-1140
    • /
    • 1998
  • Thin films of $Bi_4Ti_3O_{12}\;nBaTiO_3(n=1&2)$ were prepared using sols erived Ba-Bi-Ti complex alkoxides. The sols were spin-cast onto $Pt/Ti/SiO_2/Si$ substrates and followed by pyrolysis for 1 hr at $620^{\circ}C,\;700^{\circ}C\;and\;750^{\circ}C$ In the thin films a pyrochlore phase seemed to be formed at a lower temperature and then tran-formed to the layered perovskite phase as the heating temperature increased. In the thin films pyrolyzed at formed to the layered perovskte phase as the heating temperature increased. In the films pyrolyzed at $750^{\circ}C$ the amount of $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ reached to 94% while $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ was 77% in composition. This result shows that the formation of the layered pervoskite phase becomes difficult as the amount of complexing $BaTiO_3$ increases. The microstructures and the electrical properties of the thin films were gen-erally improved with the incease of the heating temperature. However the presence of the pyrochlore phase could not be removed effectively. Our study showed that the electrical properties of $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ were pronouncedly improved with complexing with BaTiO3 when compared to those of $Bi_4Ti_3O_{12}$ while the presence of the pyrochlore phase was detrimental to the those of $Bi_4Ti_3O_{12}{\cdot}2BaTiO_3$.

  • PDF

A study on the manufacture of dielectric glass-ceramics (유전성 glass-ceramics 제조에 관한 연구)

  • 이종근;박용완;이병하;현동석;이준영
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.4
    • /
    • pp.281-286
    • /
    • 1982
  • The composition of glasses to be suitable for crystallisation of $BaTiO_3$ by heat-treatment and the dielectric properties of the glass-ceramics were investigated. The composition of the family of glasses was defined by the formula $\chi$ $BaTiO_3 + (100-$\chi$)Al_2O_3$.$2SiO_2$ and excess BaO. Data were presented on dielectric constant and loss tangent at various frequencies. The effects of excess BaO on dielectric properties were investigated. The additions of $Na_2O$ and $Nb_2O_5$ shifted the Curite temperature of these glass-ceramics. The glass composition which was able to be melted at 145$0^{\circ}C$ and moulded as homogeneous glass phase without devitrification should contain $Al_2O_3$.$2SiO_2$ more than 30 mole %. The more the amount of additive BaO increased, the more dielectric constant increased. When the maximum heat-treatment temperature was 105$0^{\circ}C$, we obtained higher dielectric constant than that of 95$0^{\circ}C$. The dielectric constant and the dielectric loss were stable at frequencies between 5$\times$104 and 107 cycle per second. When $Na_2O$ and $Nb_2O_5$ were added, the Curie temperature, presented at 14$0^{\circ}C$ to 15$0^{\circ}C$, shifted to lower temperature. Therefore, the glass-ceramics having high dielectric constant at room temperature were obtained.

  • PDF

A Study or the Crystallographic Properties or ZnO/SiO2/Si Thin Film for FBAR (FBAR용 ZnO/SiO2Si 박막의 결정학적 특성에 관한 연구)

  • 금민종;손인환;최명규;추순남;최형욱;신영화;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.711-715
    • /
    • 2003
  • In this study, we prepared ZnO/glass and ZnO/SiO$_2$/Si thin film by Facing Targets Sputtering (FTS) system for Film Bulk Acoustic Resonator (FBAR). When the ZnO thin film applied to piezoelectric thin film, it requires good c-axis preferred orientation. And c-axis orientation has a remarkable difference with preparation conditions. Therefore, c-axis orientation must be significantly evaluated as a function of deposition conditions. Moreover, in order to prepare ZnO thin film with good crystallographic properties and progressive of efficiency of product process, the ZnO thin film should be prepared as low temperature as possible. In this work, we prepared ZnO thin films on slide glass and SiO$_2$/Si substrate. And the crystallographic characteristics of ZnO thin films on sputtering conditions were investigated by alpha-step and X-ray diffraction.

Effect of $MnO_2$ Addition on the MIcrostructure and PTCR Characteristics in Semiconducting $BaTiO_3$ Ceramics (반도성 $BaTiO_3$ 세라믹스의 미세구조 및 PTCR 특성에 미치는 $MnO_2$ 첨가 효과)

  • 김준수;김홍수;백남석;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.567-574
    • /
    • 1995
  • The effect of MnO2 addition to 0.1mol% Sb2O3-doped BaTiO3 ceramics on microstructure and PTCR characteristics was studied. The PTCR characteristics was observed when 0.01 and 0.02 wt% MnO2 were added and sintered at 132$0^{\circ}C$ for 1 hour. The characteristics can be explained by the changes in the number and size of the abnormal grain growth due to the liquid phase during sintering. when the amount of MnO2 addition was 0.03 wt%, the sample showed NTCR characteristics with room-temperature resistivity over 109 Ωm regardless of the sintering temperature. This behavior can be described by the microstructure change due to the abnormal grain growth and charge compensation effect by MnO2 added. The room-temperature resistivity was increased as the amount of MnO2 was increased. And the specific resistivity ratio (pmax/pmin) showed maximum at 0.02wt% MnO2.

  • PDF

R-Curve Behavior of Particulate Composites of ${Al_2}{O_3}$ Containing SiC and $ZrO_2$: II. Theoretical Analysis (SiC와 $ZrO_2$를 함유하는 ${Al_2}{O_3}$ 입자복합체의 균열저항거동: II. 이론적 분석)

  • 나상웅;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.368-375
    • /
    • 2000
  • Fracture toughness of particulate composites of Al2O3/SiC, Al2O3/ZrO2 and Al2O3/ZrO2/SiC was analysed theoretically. According to the suggested particle bridging model for obtaining the R-curve height, the crack extension resistance for the long crack was linearly proportional to the residual calmping stress at the interface between the second phase and the matrix. It was also a function of the particle size and the content. It was confirmed that the rising R-curve behavior of Al2O3 containing 30 vol% SiC particles of 3${\mu}{\textrm}{m}$ was owing to the strong crack bridging by SiC particles. For Al2O3/ZrO2/SiC composites, the tensional stress from the 3${\mu}{\textrm}{m}$ SiC particles was large enough to activate the spontaneous transformation of the ZrO2. The crack extension resistance due to the particle bridging mechanism did not seem to be affected much by the coupled toughening, but its resultant toughness increase could be significantly smaller due to the dependency on the matrix toughness.

  • PDF

Monte Carlo Simulation of $SiO_2$ Systems ($SiO_2$계의 Monte Carlo 시뮬레이션)

  • 이종무
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.47-54
    • /
    • 1986
  • The structures of crystalline vitreous and liquid $SiO_2$ were Monte carlo simulated employing the potential energy function comprising Lennard-Jones 2-body and Axilrod-Teller 3-body potentials. Although the Si-O-Si angular distribution functions obtained in the simulation appear to be higher than the experimental results the other simulation results including SiO, O-O and Si-Si radial distribution functions and O-Si-O anglular distribution functions agree well with experimental data within acceptable limits. Themost important outcome in this study is that various $SiO_2$forms were successfully reproduced with the same potential energy function.

  • PDF