• Title/Summary/Keyword: Be

Search Result 447,280, Processing Time 0.36 seconds

A study of analytical method for Benzo[a]pyrene in edible oils (식용유지 중 벤조피렌 분석법 비교 연구)

  • Min-Jeong Kim;jun-Young Park;Min-Ju Kim;Eun-Young Jo;Mi-Young Park;Nan-Sook Han;Sook-Nam Hwang
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.291-299
    • /
    • 2023
  • The benzo[a]pyrene in edible oils is extracted using methods such as Liquid-liquid, soxhlet and ultrasound-assisted extraction. However these extraction methods have significant drawbacks, such as long extraction time and large amount of solvent usage. To overcome these drawbacks, this study attempted to improve the current complex benzo[a]pyrene analysis method by applying the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method that can be analyzed in a simple and short time. The QuEChERS method applied in this study includes extraction of benzo[a]pyrene into n-hexane saturated acetonitrile and n-hexane. After extraction and distribution using magnesium sulfate and sodium chloride, benzo[a]pyrene is analyzed by liquid chromatography with fluorescence detector (LC/FLR). As a result of method validation of the new method, the limit of detection (LOD) and quantification (LOQ) were 0.02 ㎍/kg and 0.05 ㎍/kg, respectively. The calibration curves were constructed using five levels (0.1~10 ㎍/kg) and coefficient (R2) was above 0.99. Mean recovery ratio was ranged from 74.5 to 79.3 % with a relative standard deviation (RSD) between 0.52 to 1.58 %. The accuracy and precision were 72.6~79.4 % and 0.14~7.20 %, respectively. All results satisfied the criteria ranges requested in the Food Safety Evaluation Department guidelines (2016) and AOAC official method of analysis (2023). Therefore, the analysis method presented in this study was a relatively simple pretreatment method compared to the existing analysis method, which reduced the analysis time and solvent use to 92 % and 96 %, respectively.

Behavior of Truss Railway Bridge Using Periodic Static and Dynamic Load Tests (주행 열차의 정적 및 동적 재하시험 계측 데이터를 이용한 트러스 철도 교량의 주기적 거동 분석)

  • Jin-Mo Kim;Geonwoo Kim;Si-Hyeong Kim;Dohyeong Kim;Dookie Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.120-129
    • /
    • 2023
  • To evaluate the vertical loads on railway bridges, conventional load tests are typically conducted. However, these tests often entail significant costs and procedural challenges. Railway conditions involve nearly identical load profiles due to standardized rail systems, which may appear straightforward in terms of load conditions. Nevertheless, this study aims to validate load tests conducted under operational train conditions by comparing the results with those obtained from conventional load tests. Additionally, static and dynamic structural behaviors are extracted from the measurement data for evaluation. To ensure the reliability of load testing, this research demonstrates feasibility through comparisons of existing measurement data with sensor attachment locations, train speeds, responses between different rail lines, tendency analysis, selection of impact coefficients, and analysis of natural frequencies. This study applies to the Dongho Railway Bridge and verifies the applicability of the proposed method. Ten operational trains and 44 sensors were deployed on the bridge to measure deformations and deflections during load test intervals, which were then compared with theoretical values. The analysis results indicate good symmetry and overlap of loads, as well as a favorable comparison between static and dynamic load test results. The maximum measured impact coefficient (0.092) was found to be lower than the theoretical impact coefficient (0.327), and the impact influence from live loads was deemed acceptable. The measured natural frequencies approximated the theoretical values, with an average of 2.393Hz compared to the calculated value of 2.415Hz. Based on these results, this paper demonstrates that for evaluating vertical loads, it is possible to measure deformations and deflections of truss railway bridges through load tests under operational train conditions without traffic control, enabling the calculation of response factors for stress adjustments.

Estimating Optimal Timber Production for the Economic and Public Functions of the National Forests in South Korea (국유림의 경제적·공익적 기능을 고려한 적정 목재생산량 추정)

  • Yujin Jeong;Younghwan Kim;Yoonseong Chang;Dooahn Kwak;Gihyun Park;Dayoung Kim;Hyungsik Jeong;Hee Han
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.561-573
    • /
    • 2023
  • National forests have an advantage over private forests in terms of higher investment in capital, technology, and labor, allowing for more intensive management. As such, national forests are expected to serve not only as a strategic reserve of forest resources to address the long-term demand for timber but also to stably perform various essential forest functions demanded by society. However, most forest stands in the current national forests belong to the fourth age class or above, indicating an imminent timber harvesting period amid an imbalanced age class structure. Therefore, if timber harvesting is not conducted based on systematic management planning, it will become difficult to ensure the continuity of the national forests' diverse functions. This study was conducted to determine the optimal volume of timber production in the national forests to improve the age-class structure while sustainably maintaining their economic and public functions. To achieve this, the study first identified areas within the national forests suitable for timber production. Subsequently, a forest management planning model was developed using multi-objective linear programming, taking into account both the national forests' economic role and their public benefits. The findings suggest that approximately 488,000 hectares within the national forests are suitable for timber production. By focusing on management of these areas, it is possible to not only improve the age-class distribution but also to sustainably uphold the forests' public benefits. Furthermore, the potential volume of timber production from the national forests for the next 100 years would be around 2 million m3 per year, constituting about 44% of the annual domestic timber supply.

Introduction and Evaluation of the Production Method for Chlorophyll-a Using Merging of GOCI-II and Polar Orbit Satellite Data (GOCI-II 및 극궤도 위성 자료를 병합한 Chlorophyll-a 산출물 생산방법 소개 및 활용 가능성 평가)

  • Hye-Kyeong Shin;Jae Yeop Kwon;Pyeong Joong Kim;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1255-1272
    • /
    • 2023
  • Satellite-based chlorophyll-a concentration, produced as a long-term time series, is crucial for global climate change research. The production of data without gaps through the merging of time-synthesized or multi-satellite data is essential. However, studies related to satellite-based chlorophyll-a concentration in the waters around the Korean Peninsula have mainly focused on evaluating seasonal characteristics or proposing algorithms suitable for research areas using a single ocean color sensor. In this study, a merging dataset of remote sensing reflectance from the geostationary sensor GOCI-II and polar-orbiting sensors (MODIS, VIIRS, OLCI) was utilized to achieve high spatial coverage of chlorophyll-a concentration in the waters around the Korean Peninsula. The spatial coverage in the results of this study increased by approximately 30% compared to polar-orbiting sensor data, effectively compensating for gaps caused by clouds. Additionally, we aimed to quantitatively assess accuracy through comparison with global chlorophyll-a composite data provided by Ocean Colour Climate Change Initiative (OC-CCI) and GlobColour, along with in-situ observation data. However, due to the limited number of in-situ observation data, we could not provide statistically significant results. Nevertheless, we observed a tendency for underestimation compared to global data. Furthermore, for the evaluation of practical applications in response to marine disasters such as red tides, we qualitatively compared our results with a case of a red tide in the East Sea in 2013. The results showed similarities to OC-CCI rather than standalone geostationary sensor results. Through this study, we plan to use the generated data for future research in artificial intelligence models for prediction and anomaly utilization. It is anticipated that the results will be beneficial for monitoring chlorophyll-a events in the coastal waters around Korea.

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.

Development of Seasonal Habitat Suitability Indices for the Todarodes Pacificus around South Korea Based on GOCI Data (GOCI 자료를 활용한 한국 연근해 살오징어의 계절별 서식적합지수 모델 개발)

  • Seonju Lee;Jong-Kuk Choi;Myung-Sook Park;Sang Woo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1635-1650
    • /
    • 2023
  • Under global warming, the steadily increasing sea surface temperature (SST) severely impacts marine ecosystems,such as the productivity decrease and change in marine species distribution. Recently, the catch of Todarodes Pacificus, one of South Korea's primary marine resources, has dramatically decreased. In this study, we analyze the marine environment that affects the formation of fishing grounds of Todarodes Pacificus and develop seasonal habitat suitability index (HSI) models based on various satellite data including Geostationary Ocean Color Imager (GOCI) data to continuously manage fisheries resources over Korean exclusive economic zone. About 83% of catches are found within the range of SST of 14.11-26.16℃,sea level height of 0.56-0.82 m, chlorophyll-a concentration of 0.31-1.52 mg m-3, and primary production of 580.96-1574.13 mg C m-2 day-1. The seasonal HSI models are developed using the Arithmetic Mean Model, which showed the best performance. Comparing the developed HSI value with the 2019 catch data, it is confirmed that the HSI model is valid because the fishing grounds are formed in different sea regions by season (East Sea in winter and Yellow Sea in summer) and the high HSI (> 0.6) concurrences to areas with the high catch. In addition, we identified the significant increasing trend in SST over study regions, which is highly related to the formation of fishing grounds of Todarodes Pacificus. We can expect the fishing grounds will be changed by accelerating ocean warming in the future. Continuous HSI monitoring is necessary to manage fisheries' spatial and temporal distribution.

Analysis of Uncertainty in Ocean Color Products by Water Vapor Vertical Profile (수증기 연직 분포에 의한 GOCI-II 해색 산출물 오차 분석)

  • Kyeong-Sang Lee;Sujung Bae;Eunkyung Lee;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1591-1604
    • /
    • 2023
  • In ocean color remote sensing, atmospheric correction is a vital process for ensuring the accuracy and reliability of ocean color products. Furthermore, in recent years, the remote sensing community has intensified its requirements for understanding errors in satellite data. Accordingly, research is currently addressing errors in remote sensing reflectance (Rrs) resulting from inaccuracies in meteorological variables (total ozone, pressure, wind field, and total precipitable water) used as auxiliary data for atmospheric correction. However, there has been no investigation into the error in Rrs caused by the variability of the water vapor profile, despite it being a recognized error source. In this study, we used the Second Simulation of a Satellite Signal Vector version 2.1 simulation to compute errors in water vapor transmittance arising from variations in the water vapor profile within the GOCI-II observation area. Subsequently, we conducted an analysis of the associated errors in ocean color products. The observed water vapor profile not only exhibited a complex shape but also showed significant variations near the surface, leading to differences of up to 0.007 compared to the US standard 62 water vapor profile used in the GOCI-II atmospheric correction. The resulting variation in water vapor transmittance led to a difference in aerosol reflectance estimation, consequently introducing errors in Rrs across all GOCI-II bands. However, the error of Rrs in the 412-555 nm due to the difference in the water vapor profile band was found to be below 2%, which is lower than the required accuracy. Also, similar errors were shown in other ocean color products such as chlorophyll-a concentration, colored dissolved organic matter, and total suspended matter concentration. The results of this study indicate that the variability in water vapor profiles has minimal impact on the accuracy of atmospheric correction and ocean color products. Therefore, improving the accuracy of the input data related to the water vapor column concentration is even more critical for enhancing the accuracy of ocean color products in terms of water vapor absorption correction.

Factors Affecting Intention to Introduce Smart Factory in SMEs - Including Government Assistance Expectancy and Task Technology Fit - (중소기업의 스마트팩토리 도입의도에 영향을 미치는 요인에 관한 연구 - 정부지원기대와 과업기술적합도를 포함하여)

  • Kim, Joung-rae
    • Journal of Venture Innovation
    • /
    • v.3 no.2
    • /
    • pp.41-76
    • /
    • 2020
  • This study confirmed factors affecting smart factory technology acceptance through empirical analysis. It is a study on what factors have an important influence on the introduction of the smart factory, which is the core field of the 4th industry. I believe that there is academic and practical significance in the context of insufficient research on technology acceptance in the field of smart factories. This research was conducted based on the Unified Theory of Acceptance and Use of Technology (UTAUT), whose explanatory power has been proven in the study of the acceptance factors of information technology. In addition to the four independent variables of the UTAUT : Performance Expectancy, Effort Expectancy, Social Influence, and Facilitating Conditions, Government Assistance Expectancy, which is expected to be an important factor due to the characteristics of the smart factory, was added to the independent variable. And, in order to confirm the technical factors of smart factory technology acceptance, the Task Technology Fit(TTF) was added to empirically analyze the effect on Behavioral Intention. Trust is added as a parameter because the degree of trust in new technologies is expected to have a very important effect on the acceptance of technologies. Finally, empirical verification was conducted by adding Innovation Resistance to a research variable that plays a role as a moderator, based on previous studies that innovation by new information technology can inevitably cause refusal to users. For empirical analysis, an online questionnaire of random sampling method was conducted for incumbents of domestic small and medium-sized enterprises, and 309 copies of effective responses were used for empirical analysis. Amos 23.0 and Process macro 3.4 were used for statistical analysis. For accurate statistical analysis, the validity of Research Model and Measurement Variable were secured through confirmatory factor analysis. Accurate empirical analysis was conducted through appropriate statistical procedures and correct interpretation for causality verification, mediating effect verification, and moderating effect verification. Performance Expectancy, Social Influence, Government Assistance Expectancy, and Task Technology Fit had a positive (+) effect on smart factory technology acceptance. The magnitude of influence was found in the order of Government Assistance Expectancy(β=.487) > Task Technology Fit(β=.218) > Performance Expectancy(β=.205) > Social Influence(β=.204). Both the Task Characteristics and the Technology Characteristics were confirmed to have a positive (+) effect on Task Technology Fit. It was found that Task Characteristics(β=.559) had a greater effect on Task Technology Fit than Technology Characteristics(β=.328). In the mediating effect verification on Trust, a statistically significant mediating role of Trust was not identified between each of the six independent variables and the intention to introduce a smart factory. Through the verification of the moderating effect of Innovation Resistance, it was found that Innovation Resistance plays a positive (+) moderating role between Government Assistance Expectancy, and technology acceptance intention. In other words, the greater the Innovation Resistance, the greater the influence of the Government Assistance Expectancy on the intention to adopt the smart factory than the case where there is less Innovation Resistance. Based on this, academic and practical implications were presented.

A Study on the Revitalization of the Competency Assessment System in the Public Sector : Compare with Private Sector Operations (공공부문 역량평가제도의 활성화 방안에 대한 연구 : 민간부분의 운영방식과의 비교 연구)

  • Kwon, Yong-man;Jeong, Jang-ho
    • Journal of Venture Innovation
    • /
    • v.4 no.1
    • /
    • pp.51-65
    • /
    • 2021
  • The HR policy in the public sector was closed and operated mainly on written tests, but in 2006, a new evaluation, promotion and education system based on competence was introduced in the promotion and selection system of civil servants. In particular, the seniority-oriented promotion system was evaluated based on competence by operating an Assessment Center related to promotion. Competency evaluation is known to be the most reliable and valid evaluation method among the evaluation methods used to date and is also known to have high predictive feasibility for performance. In 2001, 19 government standard competency models were designed. In 2006, the competency assessment was implemented with the implementation of the high-ranking civil service team system. In the public sector, the purpose of the competency evaluation is mainly to select third-grade civil servants, assign fourth-grade civil servants, and promotion fifth-grade civil servants. However, competency assessments in the public sector differ in terms of competency assessment objectives, assessment processes and competency assessment programmes compared to those in the private sector. For the purposes of competency assessment, the public sector is for the promotion of candidates, and the private sector focuses on career development and fostering. Therefore, it is not continuously developing capabilities than the private sector and is not used to enhance performance in performing its duties. In relation to evaluation items, the public sector generally operates a system that passes capacity assessment at 2.5 out of 5 for 6 competencies, lacks feedback on what competencies are lacking, and the private sector uses each individual's competency score. Regarding the selection and operation of evaluators, the public sector focuses on fairness in evaluation, and the private sector focuses on usability, which is inconsistent with the aspect of developing capabilities and utilizing human resources in the right place. Therefore, the public sector should also improve measures to identify outstanding people and motivate them through capacity evaluation and change the operation of the capacity evaluation system so that they can grow into better managers through accurate reports and individual feedback