• Title/Summary/Keyword: Bayesian trust model

Search Result 5, Processing Time 0.023 seconds

LCT: A Lightweight Cross-domain Trust Model for the Mobile Distributed Environment

  • Liu, Zhiquan;Ma, Jianfeng;Jiang, Zhongyuan;Miao, Yinbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.914-934
    • /
    • 2016
  • In the mobile distributed environment, an entity may move across domains with great frequency. How to utilize the trust information in the previous domains and quickly establish trust relationships with others in the current domain remains a challenging issue. The classic trust models do not support cross-domain and the existing cross-domain trust models are not in a fully distributed way. This paper improves the outstanding Certified Reputation (CR) model and proposes a Lightweight Cross-domain Trust (LCT) model for the mobile distributed environment in a fully distributed way. The trust certifications, in which the trust ratings contain various trust aspects with different interest preference weights, are collected and provided by the trustees. Furthermore, three factors are comprehensively considered to ease the issue of collusion attacks and make the trust certifications more accurate. Finally, a cross-domain scenario is deployed and implemented, and the comprehensive experiments and analysis are conducted. The results demonstrate that our LCT model obviously outperforms the Bayesian Network (BN) model and the CR model in our cross-domain scenario, and significantly improves the successful interaction rates of the honest entities without increasing the risks of interacting with the malicious entities.

A new security model in p2p network based on Rough set and Bayesian learner

  • Wang, Hai-Sheng;Gui, Xiao-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2370-2387
    • /
    • 2012
  • A new security management model based on Rough set and Bayesian learner is proposed in the paper. The model focuses on finding out malicious nodes and getting them under control. The degree of dissatisfaction (DoD) is defined as the probability that a node belongs to the malicious node set. Based on transaction history records local DoD (LDoD) is calculated. And recommended DoD (RDoD) is calculated based on feedbacks on recommendations (FBRs). According to the DoD, nodes are classified and controlled. In order to improve computation accuracy and efficiency of the probability, we employ Rough set combined with Bayesian learner. For the reason that in some cases, the corresponding probability result can be determined according to only one or two attribute values, the Rough set module is used; And in other cases, the probability is computed by Bayesian learner. Compared with the existing trust model, the simulation results demonstrate that the model can obtain higher examination rate of malicious nodes and achieve the higher transaction success rate.

Security Clustering Algorithm Based on Integrated Trust Value for Unmanned Aerial Vehicles Network

  • Zhou, Jingxian;Wang, Zengqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1773-1795
    • /
    • 2020
  • Unmanned aerial vehicles (UAVs) network are a very vibrant research area nowadays. They have many military and civil applications. Limited bandwidth, the high mobility and secure communication of micro UAVs represent their three main problems. In this paper, we try to address these problems by means of secure clustering, and a security clustering algorithm based on integrated trust value for UAVs network is proposed. First, an improved the k-means++ algorithm is presented to determine the optimal number of clusters by the network bandwidth parameter, which ensures the optimal use of network bandwidth. Second, we considered variables representing the link expiration time to improve node clustering, and used the integrated trust value to rapidly detect malicious nodes and establish a head list. Node clustering reduce impact of high mobility and head list enhance the security of clustering algorithm. Finally, combined the remaining energy ratio, relative mobility, and the relative degrees of the nodes to select the best cluster head. The results of a simulation showed that the proposed clustering algorithm incurred a smaller computational load and higher network security.

Assessing the public preference and acceptance for renewable energy participation initiatives - focusing on photovoltaic power (재생에너지 사업 참여에 대한 국민 선호와 수용성 분석 - 태양광 발전을 중심으로)

  • Ham, AeJung;Kang, SeungJin
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.36-49
    • /
    • 2018
  • This study analyzed the public preference and acceptance regarding renewable energy projects through Choice Based Conjoint Analysis. The results show that the surveyed respondents consider the leading authority of the projects, as the most important factor when considering participating in renewable energy initiatives. Following this, the mode of participation and profit distribution and the power plant location are also viewed as important, whereas participation through decision making regarding the projects was less important. Also when participating in renewable energy projects, respondents tend to prefer to financially participating through loans or owning shares rather than volunteering support for the business such as sharing information, stating one's views, or providing cooperation and coordination. Therefore, the focus is on distributional justice, such as financial investment and profit distribution, rather than procedural justice, for instance decision making. When analyzing the part-worths utilities for the participation attribute, the respondents most preferred to receiving dividends based on earnings by owning shares with the local government in charge of the entire projects. As a consequence, the results suggest that it is important to have local government get involved and have trust-worthy governing systems in place for the initiation of the public participating-renewable energy projects.

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.