• Title/Summary/Keyword: Bayesian statistical method

Search Result 308, Processing Time 0.021 seconds

EM Algorithm-based Segmentation of Magnetic Resonance Image Corrupted by Bias Field (바이어스필드에 의해 왜곡된 MRI 영상자료분할을 위한 EM 알고리즘 기반 접근법)

  • 김승구
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.305-319
    • /
    • 2003
  • This paper provides a non-Bayesian method based on the expanded EM algorithm for segmenting the magnetic resonance images degraded by bias field. For the images with the intensity as a pixel value, many segmentation methods often fail to segment it because of the bias field(with low frequency) as well as noise(with high frequency). Our contextual approach is appropriately designed by using normal mixture model incorporated with Markov random field for noise-corrective segmentation and by using the penalized likelihood to estimate bias field for efficient bias filed-correction.

Bayesian Mode1 Selection and Diagnostics for Nonlinear Regression Model (베이지안 비선형회귀모형의 선택과 진단)

  • 나종화;김정숙
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.139-151
    • /
    • 2002
  • This study is concerned with model selection and diagnostics for nonlinear regression model through Bayes factor. In this paper, we use informative prior and simulate observations from the posterior distribution via Markov chain Monte Carlo. We propose the Laplace approximation method and apply the Laplace-Metropolis estimator to solve the computational difficulty of Bayes factor.

Robust Multidimensional Scaling for Multi-robot Localization (멀티로봇 위치 인식을 위한 강화 다차원 척도법)

  • Je, Hong-Mo;Kim, Dai-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.117-122
    • /
    • 2008
  • This paper presents a multi-robot localization based on multidimensional scaling (MDS) in spite of the existence of incomplete and noisy data. While the traditional algorithms for MDS work on the full-rank distance matrix, there might be many missing data in the real world due to occlusions. Moreover, it has no considerations to dealing with the uncertainty due to noisy observations. We propose a robust MDS to handle both the incomplete and noisy data, which is applied to solve the multi-robot localization problem. To deal with the incomplete data, we use the Nystr$\ddot{o}$m approximation which approximates the full distance matrix. To deal with the uncertainty, we formulate a Bayesian framework for MDS which finds the posterior of coordinates of objects by means of statistical inference. We not only verify the performance of MDS-based multi-robot localization by computer simulations, but also implement a real world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the proposed method is almost similar to that of Monte Carlo Localization(MCL).

  • PDF

Efficient random number generation from extreme tail areas of a t-distribution (t 분포의 극단 꼬리부분으로부터의 효율적인 난수생성)

  • 오만숙;김나영
    • The Korean Journal of Applied Statistics
    • /
    • v.9 no.1
    • /
    • pp.165-177
    • /
    • 1996
  • It is often needed to generate random numbers from truncated t-distributions to carry out Bayesian inferences, especially in Monte Carlo integration for estimation of posterior densities of constrained parameters. However, when the restricted area is an extreme tail area with a small probability most existing random generation methods are not efficient. In this paper, we propose an efficient acceptance-rejection method to generate random numbers from extreme tail areas of a t-distribution. Using some simulation results, we compare the proposed algorithm with other popular methods.

  • PDF

Skin Pigment Recognition using Projective Hemoglobin- Melanin Coordinate Measurements

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Song, Ha-Joo;Kwon, Ki-Ryong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1825-1838
    • /
    • 2016
  • The detection of skin pigment is crucial in the diagnosis of skin diseases and in the evaluation of medical cosmetics and hairdressing. Accuracy in the detection is a basis for the prompt cure of skin diseases. This study presents a method to recognize and measure human skin pigment using Hemoglobin-Melanin (HM) coordinate. The proposed method extracts the skin area through a Gaussian skin-color model estimated from statistical analysis and decomposes the skin area into two pigments of hemoglobin and melanin using an Independent Component Analysis (ICA) algorithm. Then, we divide the two-dimensional (2D) HM coordinate into rectangular bins and compute the location histograms of hemoglobin and melanin for all the bins. We label the skin pigment of hemoglobin, melanin, and normal skin on all bins according to the Bayesian classifier. These bin-based HM projective histograms can quantify the skin pigment and compute the standard deviation on the total quantification of skin pigments surrounding normal skin. We tested our scheme using images taken under different illumination conditions. Several cosmetic coverings were used to test the performance of the proposed method. The experimental results show that the proposed method can detect skin pigments with more accuracy and evaluate cosmetic covering effects more effectively than conventional methods.

Crowd Activity Recognition using Optical Flow Orientation Distribution

  • Kim, Jinpyung;Jang, Gyujin;Kim, Gyujin;Kim, Moon-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2948-2963
    • /
    • 2015
  • In the field of computer vision, visual surveillance systems have recently become an important research topic. Growth in this area is being driven by both the increase in the availability of inexpensive computing devices and image sensors as well as the general inefficiency of manual surveillance and monitoring. In particular, the ultimate goal for many visual surveillance systems is to provide automatic activity recognition for events at a given site. A higher level of understanding of these activities requires certain lower-level computer vision tasks to be performed. So in this paper, we propose an intelligent activity recognition model that uses a structure learning method and a classification method. The structure learning method is provided as a K2-learning algorithm that generates Bayesian networks of causal relationships between sensors for a given activity. The statistical characteristics of the sensor values and the topological characteristics of the generated graphs are learned for each activity, and then a neural network is designed to classify the current activity according to the features extracted from the multiple sensor values that have been collected. Finally, the proposed method is implemented and tested by using PETS2013 benchmark data.

Bayesian structural equation modeling for analysis of climate effect on whole crop barley yield (청보리 생산량의 기후요인 분석을 위한 베이지안 구조방정식 모형)

  • Kim, Moonju;Jeon, Minhee;Sung, Kyung-Il;Kim, Young-Ju
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.2
    • /
    • pp.331-344
    • /
    • 2016
  • Whole Crop Barley (WCB) is a representative self-sufficient winter annual forage crop, along with Italian Ryegrass (IRG), in Korea. In this study, we examined the path relationship between WCB yield and climate factors such as temperature, precipitation, and sunshine duration using a structural equation model. A Bayesian approach was considered to overcome the limitations of the small WCB sample size. As prior distribution of parameters in Bayesian method, standard normal distribution, the posterior result of structural equation model for WCB, and the posterior result of structural equation model for IRG (which is the most popular winter crop) were used. Also, Heywood case correction in prior distribution was considered to obtain the posterior distribution of parameters; in addition, the best prior to fit the characteristics of winter crops was identified. In our analysis, we found that the best prior was set by using the results of a structural equation model to IRG with Heywood case correction. This result can provide an alternative for research on forage crops that have hard to collect sample data.

Method of Processing the Outliers and Missing Values of Field Data to Improve RAM Analysis Accuracy (RAM 분석 정확도 향상을 위한 야전운용 데이터의 이상값과 결측값 처리 방안)

  • Kim, In Seok;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.264-271
    • /
    • 2017
  • Purpose: Field operation data contains missing values or outliers due to various causes of the data collection process, so caution is required when utilizing RAM analysis results by field operation data. The purpose of this study is to present a method to minimize the RAM analysis error of the field data to improve the accuracy. Methods: Statistical methods are presented for processing of the outliers and the missing values of the field operating data, and after analyzing the RAM, the differences between before and after applying the technique are discussed. Results: The availability is estimated to be lower by 6.8 to 23.5% than that before processing, and it is judged that the processing of the missing values and outliers greatly affect the RAM analysis result. Conclusion: RAM analysis of OO weapon system was performed and suggestions for improvement of RAM analysis were presented through comparison with the new and current method. Data analysis results without appropriate treatment of error values may result in incorrect conclusions leading to inappropriate decisions and actions.

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

Joint analysis of binary and continuous data using skewed logit model in developmental toxicity studies (발달 독성학에서 비대칭 로짓 모형을 사용한 이진수 자료와 연속형 자료에 대한 결합분석)

  • Kim, Yeong-hwa;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.123-136
    • /
    • 2020
  • It is common to encounter correlated multiple outcomes measured on the same subject in various research fields. In developmental toxicity studies, presence of malformed pups and fetal weight are measured on the pregnant dams exposed to different levels of a toxic substance. Joint analysis of such two outcomes can result in more efficient inferences than separate models for each outcome. Most methods for joint modeling assume a normal distribution as random effects. However, in developmental toxicity studies, the response distributions may change irregularly in location and shape as the level of toxic substance changes, which may not be captured by a normal random effects model. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint model for binary and continuous outcomes. In our model, we incorporate a skewed logit model for the binary outcome to allow the response distributions to have flexibly in both symmetric and asymmetric shapes on the toxic levels. We apply our proposed method to data from a developmental toxicity study of diethylhexyl phthalate.