• 제목/요약/키워드: Bayesian quantile regression

검색결과 9건 처리시간 0.02초

Bayesian Semi-Parametric Regression for Quantile Residual Lifetime

  • Park, Taeyoung;Bae, Wonho
    • Communications for Statistical Applications and Methods
    • /
    • 제21권4호
    • /
    • pp.285-296
    • /
    • 2014
  • The quantile residual life function has been effectively used to interpret results from the analysis of the proportional hazards model for censored survival data; however, the quantile residual life function is not always estimable with currently available semi-parametric regression methods in the presence of heavy censoring. A parametric regression approach may circumvent the difficulty of heavy censoring, but parametric assumptions on a baseline hazard function can cause a potential bias. This article proposes a Bayesian semi-parametric regression approach for inference on an unknown baseline hazard function while adjusting for available covariates. We consider a model-based approach but the proposed method does not suffer from strong parametric assumptions, enjoying a closed-form specification of the parametric regression approach without sacrificing the flexibility of the semi-parametric regression approach. The proposed method is applied to simulated data and heavily censored survival data to estimate various quantile residual lifetimes and adjust for important prognostic factors.

Bayesian quantile regression analysis of Korean Jeonse deposit

  • Nam, Eun Jung;Lee, Eun Kyung;Oh, Man-Suk
    • Communications for Statistical Applications and Methods
    • /
    • 제25권5호
    • /
    • pp.489-499
    • /
    • 2018
  • Jeonse is a unique property rental system in Korea in which a tenant pays a part of the price of a leased property as a fixed amount security deposit and gets back the entire deposit when the tenant moves out at the end of the tenancy. Jeonse deposit is very important in the Korean real estate market since it is directly related to the residential property sales price and it is a key indicator to predict future real estate market trend. Jeonse deposit data shows a skewed and heteroscedastic distribution and the commonly used mean regression model may be inappropriate for the analysis of Jeonse deposit data. In this paper, we apply a Bayesian quantile regression model to analyze Jeonse deposit data, which is non-parametric and does not require any distributional assumptions. Analysis results show that the quantile regression coefficients of most explanatory variables change dramatically for different quantiles. The regression coefficients of some variables have different signs for different quantiles, implying that even the same variable may affect the Jeonse deposit in the opposite direction depending on the amount of deposit.

베이즈 정보 기준을 활용한 분할-정복 벌점화 분위수 회귀 (Model selection via Bayesian information criterion for divide-and-conquer penalized quantile regression)

  • 강종경;한석원;방성완
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.217-227
    • /
    • 2022
  • 분위수 회귀 모형은 변수에 숨겨진 복잡한 정보를 살펴보기 위한 효율적인 도구를 제공하는 장점을 바탕으로 많은 분야에서 널리 사용되고 있다. 그러나 현대의 대용량-고차원 데이터는 계산 시간 및 저장공간의 제한으로 인해 분위수 회귀 모형의 추정을 매우 어렵게 만든다. 분할-정복은 전체 데이터를 계산이 용이한 여러개의 부분집합으로 나눈 다음 각 분할에서의 요약 통계량만을 이용하여 전체 데이터의 추정량을 재구성하는 기법이다. 본 연구에서는 분할-정복 기법을 벌점화 분위수 회귀에 적용하고 베이즈 정보기준을 활용하여 변수를 선택하는 방법에 관하여 연구하였다. 제안 방법은 분할 수를 적절하게 선택하였을 때, 전체 데이터로 계산한 일반적인 분위수 회귀 추정량만큼 변수 선택의 측면에서 일관된 결과를 제공하면서 계산 속도의 측면에서 효율적이다. 이러한 제안된 방법의 장점은 시뮬레이션 데이터 및 실제 데이터 분석을 통해 확인하였다.

베이지안 분위회귀모형을 이용한 지역인구에 영향을 미치는 요인분석 (Factors affecting regional population of Korea using Bayesian quantile regression)

  • 김민영;오만숙
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.823-835
    • /
    • 2021
  • 지역별 인구의 분포에 영향을 미치는 요인의 파악은 국가의 사회, 경제, 문화적 발전 위한 정부의 인구정책 수립에 매우 중요하다. 본 연구에서는 2019년 인구주택 총조사 자료를 기반으로 대한민국 국토를 서울, 대도시, 기타지역의 세 지역으로 나누어 각 지역에서 소지역의 인구 크기에 영향을 미치는 요인들을 살펴 보았다. 인구 자료의 특징은 매우 비대칭적이며 이분산성을 가지므로 조건부 평균에 초점을 맞추는 일반적인 회귀모형 대신 분포에 대한 가정이 필요하지 않은 분위회귀모형을 사용하여 인구의 크기에 따라 변화하는 각 요인의 세부적인 영향을 살펴보았다. 분석결과 서울, 대도시, 기타지역에 따라 그리고 같은 지역 내에서도 세부 지역의 인구크기에 따라 요인의 영향이 매우 달라짐을 확인하였다. 이 결과들은 인구관련 변수들이 지역 마다 매우 이질적인 성질을 가지고 있으며 따라서 획일적인 인구정책이 아닌 지역 특성에 맞는 맞춤형 인구정책을 수립해야 할 필요성을 시사한다.

일반계 고등학생 사교육비 지출에 대한 베이지안 분위회귀모형 분석 (Bayesian quantile regression analysis of private education expenses for high scool students in Korea)

  • 오현숙
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1457-1469
    • /
    • 2017
  • 일반계 고등학생의 사교육비 지출은 대학입시와 맞물려 최근 더욱 증가하고 있는 동시에 가구소득 수준, 지역 등에 따라 양극화되고 있다. 기존의 사교육비 연구는 주로 다중회귀모형을 토대로 최소자승법을 이용하였으나 자료가 최소자승법의 기본가정인 정규성과 등분산성을 만족하지 않으면 분석결과의 신뢰성에 대한 문제가 발생된다. 본 연구는 2015년도 사교육실태조사자료에 대하여 정규성과 등분산성이 성립되지 않음을 확인하고 이를 통제할 수 있는 베이지안 분위회귀모형을 적합한 후 깁스 샘플링 방법을 이용하여 사교육비 지출규모 수준 (분위수)에 따라 영향요인들을 분석하였다. 분석결과 학생의 성별, 부모의 나이, 방과후 학교 참여시간과 비용은 사교육비 지출규모에 의미있는 영향을 주지 못하였다. 가구소득은 사교육비 지출규모의 모든 수준에서 동일하게 영향을 주는 요인으로 파악되었다. 그 외, 거주지역, 총사교육시간, 학생의 성적, 부모의 교육정도, 가구의 경제활동주체, 방과후 학교 참여여부, EBS 교재비용은 사교육비 지출 규모의 수준에 따라 다르게 영향을 주었다.

베이지안 다중 비교차 분위회귀 분석 기법을 이용한 비정상성 빈도해석 모형 개발 (A Development of Nonstationary Frequency Analysis Model using a Bayesian Multiple Non-crossing Quantile Regression Approach)

  • 오랑치맥 솜야;김용탁;권영준;권현한
    • 한국연안방재학회지
    • /
    • 제4권3호
    • /
    • pp.119-131
    • /
    • 2017
  • Global warming under the influence of climate change and its direct impact on glacial and sea level are known issue. However, there is a lack of research on an indirect impact of climate change such as coastal structure design which is mainly based on a frequency analysis of water level under the stationary assumption, meaning that maximum sea level will not vary significantly over time. In general, stationary assumption does not hold and may not be valid under a changing climate. Therefore, this study aims to develop a novel approach to explore possible distributional changes in annual maximum sea levels (AMSLs) and provide the estimate of design water level for coastal structures using a multiple non-crossing quantile regression based nonstationary frequency analysis within a Bayesian framework. In this study, 20 tide gauge stations, where more than 30 years of hourly records are available, are considered. First, the possible distributional changes in the AMSLs are explored, focusing on the change in the scale and location parameter of the probability distributions. The most of the AMSLs are found to be upward-convergent/divergent pattern in the distribution, and the significance test on distributional changes is then performed. In this study, we confirm that a stationary assumption under the current climate characteristic may lead to underestimation of the design sea level, which results in increase in the failure risk in coastal structures. A detailed discussion on the role of the distribution changes for design water level is provided.

Forecasting value-at-risk by encompassing CAViaR models via information criteria

  • Lee, Sangyeol;Noh, Jungsik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1531-1541
    • /
    • 2013
  • This paper proposes a new method of VaR forecasting using the conditional autoregressive VaR (CAViaR) models and information criteria. Instead of using a single CAViaR model, we propose to utilize several candidate CAViaR models during a forecasting period. By adopting the Akaike and Bayesian information criteria for quantile regression, we can update not only parameter estimates but also the CAViaR specifications. We also propose extended CAViaR models with a constant location parameter. An empirical study is provided to examine the performance of the proposed method. The results suggest that our method shows more stable performance than those using a single specification.

Association of heavy metal complex exposure and neurobehavioral function of children

  • Minkeun Kim;Chulyong Park;Joon Sakong;Shinhee Ye;So young Son;Kiook Baek
    • Annals of Occupational and Environmental Medicine
    • /
    • 제35권
    • /
    • pp.23.1-23.14
    • /
    • 2023
  • Background: Exposure to heavy metals is a public health concern worldwide. Previous studies on the association between heavy metal exposure and neurobehavioral functions in children have focused on single exposures and clinical manifestations. However, the present study evaluated the effects of heavy metal complex exposure on subclinical neurobehavioral function using a Korean Computerized Neurobehavior Test (KCNT). Methods: Urinary mercury, lead, cadmium analyses as well as symbol digit substitution (SDS) and choice reaction time (CRT) tests of the KCNT were conducted in children aged between 10 and 12 years. Reaction time and urinary heavy metal levels were analyzed using partial correlation, linear regression, Bayesian kernel machine regression (BKMR), the weighted quantile sum (WQS) regression and quantile G-computation analysis. Results: Participants of 203 SDS tests and 198 CRT tests were analyzed, excluding poor cooperation and inappropriate urine sample. Partial correlation analysis revealed no association between neurobehavioral function and exposure to individual heavy metals. The result of multiple linear regression shows significant positive association between urinary lead, mercury, and CRT. BMKR, WQS regression and quantile G-computation analysis showed a statistically significant positive association between complex urinary heavy metal concentrations, especially lead and mercury, and reaction time. Conclusions: Assuming complex exposures, urinary heavy metal concentrations showed a statistically significant positive association with CRT. These results suggest that heavy metal complex exposure during childhood should be evaluated and managed strictly.

베이지안 다중분위회귀분석모형 개발 및 온도상승에 따른 미래 확률강수량 전망 (Development of Bayesian Multiple Quantile Regression model and Estimation fo Future Design Rainfall with Increased Temperature)

  • 오랑치맥 솜야;김진국;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.22-22
    • /
    • 2019
  • 최근 전 세계적으로 급증하는 기후변화의 영향으로 인해 강우량 증가에 따른 이상홍수 발생 및 댐 여유고 부족 등 다양한 위험인자가 노출되고 있다. 이러한 예상치 못한 이상홍수는 실제 거주하고 있는 사람들을 위협할 수 있으며, 하천 범람으로 인해 2차 3차 피해가 일어날 가능성이 존재하고 있다. 이에 다양한 자연재해로부터 인명 및 재산 피해를 방지 및 저감하기 위한 목적으로 다양한 수공구조물이 존재하며, 수자원 관리계획 수립의 목적에 따라 다양한 강수량이 활용되고 있다. 특히, 지구온난화에 따른 기후변화 영향을 고려한 연최대 강수량 및 확률강수량 산정이 필요한 시점이며, 온도변화에 따른 증기압 계산식인 Clausius-Clapeyron 관계에 따르면 대기 온도가 $1^{\circ}C$ 상승할 때 대기수분량이 6~7% 증가하여 평균 온도상승에 따라 극치강수량 발생 잠재력이 향상 될 것으로 전망되고 있다. 본 연구에서는 온도상승에 따른 극치강수량의 변화를 베이지안 다중분위회귀분석모형을 통해 산정하여 CORDEX 온도자료 기반의 미래 극치강수량을 전망하였다. 본 연구결과 100년 이상 빈도의 강수량은 온도상승에 따라 급격히 증가하는 추세를 확인하였으며, 2100년까지 온도상승을 고려한 최대 극치강수량은 1500mm를 넘을 가능성을 확인하였다.

  • PDF