• 제목/요약/키워드: Bayesian probabilistic model

검색결과 126건 처리시간 0.02초

베이지안 네트워크를 이용한 지진 유발 화재・폭발 복합재해 확률론적 안전성 평가 (Bayesian Network-based Probabilistic Safety Assessment for Multi-Hazard of Earthquake-Induced Fire and Explosion)

  • 이세혁;석의찬;송준호
    • 한국전산구조공학회논문집
    • /
    • 제37권3호
    • /
    • pp.205-216
    • /
    • 2024
  • 최근 원자력 지진 PSA(Probabilistic Safety Assessment)를 토대로 산업시설물의 지진 PSA를 수행하는 연구가 진행되었다. 해당 연구는 원자력 발전소와 산업시설물의 차이를 파악하고, 최종적으로 운영정지를 목표로 하는 고장수목(Fault Tree)를 구축한 후 시각적 확률도구인 베이지안 네트워크(Bayesian Network, BN)으로 변환하였다. 본 연구는 선행연구를 기반으로 지진으로 유발된 구조손상으로 인해 발생 가능한 화재・폭발에 대해 PSA를 수행하고자 하였다. 이를 위해 화재・폭발을 사건수목(Event Tree)으로 표현하고, BN으로 변환하였다. 변환된 BN은 화재・폭발 모듈로서 선행연구에서 제시된 고장수목 기반 BN과 연계되어 최종적으로 지진 유발 화재・폭발 PSA를 수행할 수 있는 BN 기반 방법론이 개발되었다. 개발된 BN을 검증하기위해 수치예제로서 가상의 가스플랜트 Plot Plan을 생성하였고, 가스플랜트의 설비 종류가 구체적으로 반영된 대규모 BN을 구축하였다. 해당 BN을 이용하여 지진 규모에 따른 전체시스템의 운영정지 확률 및 하위시스템들의 고장확률 산정과 더불어 역으로 전체시스템이 운영 정지되었을 때 하위시스템들의 영향도 분석과 화재・폭발 가능성을 산정하여 다양한 의사결정을 수행할 수 있음을 제시함으로써 그 우수성을 확인하였다.

Context Aware System based on Bayesian Network driven Context Reasoning and Ontology Context Modeling

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.254-259
    • /
    • 2008
  • Uncertainty of result of context awareness always exists in any context-awareness computing. This falling-off in accuracy of context awareness result is mostly caused by the imperfectness and incompleteness of sensed data, because of this reasons, we must improve the accuracy of context awareness. In this article, we propose a novel approach to model the uncertain context by using ontology and context reasoning method based on Bayesian Network. Our context aware processing is divided into two parts; context modeling and context reasoning. The context modeling is based on ontology for facilitating knowledge reuse and sharing. The ontology facilitates the share and reuse of information over similar domains of not only the logical knowledge but also the uncertain knowledge. Also the ontology can be used to structure learning for Bayesian network. The context reasoning is based on Bayesian Networks for probabilistic inference to solve the uncertain reasoning in context-aware processing problem in a flexible and adaptive situation.

베이지언 추론에 기반한 확률론적 피로수명 평가 (Stochastic Fatigue Life Assesment based on Bayesian-inference)

  • 박명진;김유일
    • 대한조선학회논문집
    • /
    • 제56권2호
    • /
    • pp.161-167
    • /
    • 2019
  • In general, fatigue analysis is performed by using deterministic model to estimate the optimal parameters. However, the deterministic model is difficult to clearly describe the physical phenomena of fatigue failure that contains many uncertainty factors. With regard to this, efforts have been made in this research to compare with the deterministic model and the stochastic models. Firstly, One deterministic S-N curve was derived from ordinary least squares technique and two P-S-N curves were estimated through Bayesian-linear regression model and Markov-Chain Monte Carlo simulation. Secondly, the distribution of Long-term fatigue damage and fatigue life were predicted by using the parameters obtained from the three methodologies and the long-term stress distribution.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • 제14권3호
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.

베이지안 망 연결 구조에 대한 데이터 군집별 기여도의 정량화 방법에 대한 연구 (Quantitative Annotation of Edges, in Bayesian Networks with Condition-Specific Data)

  • 정성원;이도헌;이광형
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.316-321
    • /
    • 2007
  • 본 연구에서는 베이지안 망 구조 학습에서, 학습 데이터의 특정 부분집합이 학습된 망의 각 연결 구조(edge)의 형성에 기여하는 정도를 정량화하는 방법을 제안한다. 생물학 정보의 분석 등에 베이지안 망 학습을 이용하는 경우, 제안된 방법은 망의 각 연결 구조의 형성에 특정 군집 데이터가 기여하는 정도의 정량화가 가능하다. 제안된 방법의 유효성을 보이기 위해, 벤치마크 베이지안 망을 이용하여 제안된 방법이 망 연결 구조에 대한 데이터 군집별 기여도를 효과적으로 정량화 할 수 있음을 보인다.

지능로봇의 동기 기반 행동선택을 위한 베이지안 행동유발성 모델 (Motivation-Based Action Selection Mechanism with Bayesian Affordance Models for Intelligence Robot)

  • 손광희;이상형;서일홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.264-266
    • /
    • 2009
  • A skill is defined as the special ability to do something well, especially as acquired by learning and practice. To learn a skill, a Bayesian network model for representing the skill is first learned. We will regard the Bayesian network for a skill as an affordance. We propose a soft Behavior Motivation(BM) switch as a method for ordering affordances to accomplish a task. Then, a skill is constructed as a combination of an affordance and a soft BM switch. To demonstrate the validity of our proposed method, some experiments were performed with GENIBO(Pet robot) performing a task using skills of Search-a-target-object, Approach-a-target-object, Push-up-in front of -a-target-object.

  • PDF

Bayesian approach for the accuracy evaluating of the seismic demand estimation of SMRF

  • Ayoub Mehri Dehno;Hasan Aghabarati;Mehdi Mahdavi Adeli
    • Earthquakes and Structures
    • /
    • 제26권2호
    • /
    • pp.117-130
    • /
    • 2024
  • Probabilistic model of seismic demand is the main tool used for seismic demand estimation, which is a fundamental component of the new performance-based design method. This model seeks to mathematically relate the seismic demand parameter and the ground motion intensity measure. This study is intended to use Bayesian analysis to evaluate the accuracy of the seismic demand estimation of Steel moment resisting frames (SMRFs) through a completely Bayesian method in statistical calculations. In this study, two types of intensity measures (earthquake intensity-related indices such as magnitude and distance and intensity indices related to ground motion and spectral response including peak ground acceleration (PGA) and spectral acceleration (SA)) have been used to form the models. In addition, an extensive database consisting of sixty accelerograms was used for time-series analysis, and the target structures included five SMRFs of three, six, nine, twelve and fifteen stories. The results of this study showed that for low-rise frames, first mode spectral acceleration index is sufficient to accurately estimate demand. However, for high-rise frames, two parameters should be used to increase the accuracy. In addition, adding the product of the square of earthquake magnitude multiplied by distance to the model can significantly increase the accuracy of seismic demand estimation.

A Methodology for Estimating the Uncertainty in Model Parameters Applying the Robust Bayesian Inferences

  • Kim, Joo Yeon;Lee, Seung Hyun;Park, Tai Jin
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.149-154
    • /
    • 2016
  • Background: Any real application of Bayesian inference must acknowledge that both prior distribution and likelihood function have only been specified as more or less convenient approximations to whatever the analyzer's true belief might be. If the inferences from the Bayesian analysis are to be trusted, it is important to determine that they are robust to such variations of prior and likelihood as might also be consistent with the analyzer's stated beliefs. Materials and Methods: The robust Bayesian inference was applied to atmospheric dispersion assessment using Gaussian plume model. The scopes of contaminations were specified as the uncertainties of distribution type and parametric variability. The probabilistic distribution of model parameters was assumed to be contaminated as the symmetric unimodal and unimodal distributions. The distribution of the sector-averaged relative concentrations was then calculated by applying the contaminated priors to the model parameters. Results and Discussion: The sector-averaged concentrations for stability class were compared by applying the symmetric unimodal and unimodal priors, respectively, as the contaminated one based on the class of ${\varepsilon}$-contamination. Though ${\varepsilon}$ was assumed as 10%, the medians reflecting the symmetric unimodal priors were nearly approximated within 10% compared with ones reflecting the plausible ones. However, the medians reflecting the unimodal priors were approximated within 20% for a few downwind distances compared with ones reflecting the plausible ones. Conclusion: The robustness has been answered by estimating how the results of the Bayesian inferences are robust to reasonable variations of the plausible priors. From these robust inferences, it is reasonable to apply the symmetric unimodal priors for analyzing the robustness of the Bayesian inferences.

A Bayesian Variable Selection Method for Binary Response Probit Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제28권2호
    • /
    • pp.167-182
    • /
    • 1999
  • This article is concerned with the selection of subsets of predictor variables to be included in building the binary response probit regression model. It is based on a Bayesian approach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the probit regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. The appropriate posterior probability of each subset of predictor variables is obtained through the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as the one with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

인과적 마코프 조건과 비결정론적 세계

  • 이영의
    • 논리연구
    • /
    • 제8권1호
    • /
    • pp.47-67
    • /
    • 2005
  • 베이즈망은 탐구 공간을 구성하는 변수들 사이에 성립하는 확률적 관계를 이용하여 그 변수들 사이에 성립된다고 가정되는 인과 관계를 추론하는데 이용된다. 베이즈망에 관한 철학적 논쟁의 대상은 특정한 변수들의 확률적 독립성을 가정하는 인과적 마코프 조건이다. 베이즈망 이론에 대한 강력한 비판자인 카트라이트는 인과적 마코프 조건이 비결정적 세계에서는 성립될 수 없기 때문에 인과적 추리에 대한 타당한 원리가 될 수 없다고 주장한다. 이글의 목적은 인과적 마코프 조건이 인과적 추리에 대한 타당한 원리가 될 수 없다는 카트라이트의 비판이 타당한가를 검토하는 것이다. 나는 인과적 사건들의 연쇄를 허용하는 연속모델은 카트라이트의 비판을 벗어날 수 있다고 주장한다.

  • PDF