• Title/Summary/Keyword: Bayesian network structure

Search Result 54, Processing Time 0.019 seconds

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

Does Social Responsibility Activities Keep Future Earnings Sustainability? (사회적 책임활동은 기업의 이익을 지속시키는가?)

  • Park, Sung-Jin;Sun, Eun-Jung
    • Management & Information Systems Review
    • /
    • v.38 no.3
    • /
    • pp.187-210
    • /
    • 2019
  • Companies shall hold social responsibility as a member of the social community. Corporate social responsibility uses corporate resources, yet it plays important roles in reducing social imbalance. Their responsibilities are highly associated with the corporate sustainability. Many earlier studies on the association between corporate social responsibility and corporate sustainability have been attempted. Yet it should be mentioned that they do not show a variety of realities as linearity between dependent variables and independent variables were assumed. Thus, this study aims to analyze Markov blanket, a node of minimum descriptive variables that relieve a rigid assumption among variables and affect corporate sustainability by using Bayesian network. Sensitivity analysis was used to elicit how other variables affect by reflecting the complex reality when real factors are changed. As an important result of this study, the firm's future earnings sustainability is naturally related to operating earnings, and as the corporate governance structure is sound, the firm is able to steadily fulfill its social responsibility. However, the fact that the size of a company is large does not mean that it is in good compliance with corporate laws. This would not be unrelated to the fact that many of today's companies are not complying with the law and are suffering social condemnation. Results from this study will serve as a useful analytic tool when investors and creditors showing interests in corporate sustainability for assessing the value of companies and making investment decisions. Moreover, they can be used as references for relevant agency supervising capital markets to establish or improve appropriate institutions aimed at improving corporate sustainability.

Identification of major risk factors association with respiratory diseases by data mining (데이터마이닝 모형을 활용한 호흡기질환의 주요인 선별)

  • Lee, Jea-Young;Kim, Hyun-Ji
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.373-384
    • /
    • 2014
  • Data mining is to clarify pattern or correlation of mass data of complicated structure and to predict the diverse outcomes. This technique is used in the fields of finance, telecommunication, circulation, medicine and so on. In this paper, we selected risk factors of respiratory diseases in the field of medicine. The data we used was divided into respiratory diseases group and health group from the Gyeongsangbuk-do database of Community Health Survey conducted in 2012. In order to select major risk factors, we applied data mining techniques such as neural network, logistic regression, Bayesian network, C5.0 and CART. We divided total data into training and testing data, and applied model which was designed by training data to testing data. By the comparison of prediction accuracy, CART was identified as best model. Depression, smoking and stress were proved as the major risk factors of respiratory disease.

Design and Implementation of Contents based on XML for Efficient e-Learning System (e-Learning 시스템을 위한 XML기반 효율적인 교육 컨텐츠의 설계 및 구현)

  • Kim, Young-Gi;Han, Sun-Gwan
    • Journal of The Korean Association of Information Education
    • /
    • v.5 no.2
    • /
    • pp.279-287
    • /
    • 2001
  • In this paper, we have defined and designed the structure of standardized XML content for supplying efficient e-Learning contents. We have also implemented the prototype of XML contents generator to create the educational contents easily. In addition, we have suggested the contents searching method using Case Base Reasoning and Bayesian belief network to supply XML contents suitable to learners request. The existing e-Learning system based on HTML could not customize and standardize, but XML contents can be reused and made an intelligent learning by supplying an adaptive content according to learners level. For evaluating the efficiency of designed XML content, we make the standard XML content for learning JAVA program in e-Learning system as well as discussing about the integrity and expanding the educational content. Finally, we have shown the architecture and effectiveness of the knowledge-based XML contents retrieval manager.

  • PDF