• 제목/요약/키워드: Bayesian network

검색결과 516건 처리시간 0.022초

A new security model in p2p network based on Rough set and Bayesian learner

  • Wang, Hai-Sheng;Gui, Xiao-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권9호
    • /
    • pp.2370-2387
    • /
    • 2012
  • A new security management model based on Rough set and Bayesian learner is proposed in the paper. The model focuses on finding out malicious nodes and getting them under control. The degree of dissatisfaction (DoD) is defined as the probability that a node belongs to the malicious node set. Based on transaction history records local DoD (LDoD) is calculated. And recommended DoD (RDoD) is calculated based on feedbacks on recommendations (FBRs). According to the DoD, nodes are classified and controlled. In order to improve computation accuracy and efficiency of the probability, we employ Rough set combined with Bayesian learner. For the reason that in some cases, the corresponding probability result can be determined according to only one or two attribute values, the Rough set module is used; And in other cases, the probability is computed by Bayesian learner. Compared with the existing trust model, the simulation results demonstrate that the model can obtain higher examination rate of malicious nodes and achieve the higher transaction success rate.

베이지안 추론을 이용한 컴퓨터 오락추구 행동 예측 분석 (An Analysis on Prediction of Computer Entertainment Behavior Using Bayesian Inference)

  • 이혜주;정의현
    • 컴퓨터교육학회논문지
    • /
    • 제21권3호
    • /
    • pp.51-58
    • /
    • 2018
  • 본 연구에서는 컴퓨터 오락추구 행동의 예측 분석을 목적으로 한국아동 청소년패널조사(KCYPS) 데이터를 대상으로 베이지안 추론을 사용하여 컴퓨터 오락추구 행동과 관련 변수들의 상호의존성과 인과관계를 조사하였다. 이를 위해 일반 베이지안 네트워크를 통한 마코프 블랭킷(Markov Blanket)을 추출하였다. 또한 변수들의 확률을 변화시켜 컴퓨터 오락추구 행동에 대한 변수들의 영향 정도를 분석하였다. 연구결과, 컴퓨터 오락추구 행동은 관련 변수들(학교학습활동, 비행-흡연, 비행-조롱, 팬덤활동, 학교규칙)의 값을 조정하였을 때 유의미하게 변화되는 것으로 나타났다. 본 연구의 결과로 베이지안 추론은 청소년의 컴퓨터 오락추구 행동을 예측하고 조절하는 등 교육 분야에서 활용될 수 있음을 제시하였다.

소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구 (Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis)

  • 강창민;어균선;이건창
    • 경영정보학연구
    • /
    • 제24권1호
    • /
    • pp.1-19
    • /
    • 2022
  • 온라인 사용자들이 소셜 미디어상에 올린 온라인 리뷰 속 숨겨진 감정을 분석하는 감성분석은 소셜미디어의 확산에 힘입어 많은 관심을 받고 있다. 본 연구는 기존 연구들과 차별화된 방법으로 감성분석을 시도하기 위하여 베이지안 네트워크에 기반한 감성 분석 모델을 제안한다. 모델에는 MBFS(Markov Blanket-based Feature Selection)가 속성 선택 기법으로 사용된다. MBFS의 성과를 실증적으로 증명하기 위하여 소셜미디어인 Yelp의 리뷰 데이터를 활용하였다. 벤치마킹 속성 선택 기법으로는 상관관계기반 속성 선택, 정보획득 속성 선택, 획득비율 속성 선택을 사용하였다. 한편, 해당 속성선택방법을 토대로 4개의 머신러닝 알고리즘을 이용하여 분류성과를 비교하였다. 나아가 MBFS로 선택된 속성들 간 인과관계를 확인하고자 베이지안 네트워크를 통해 What-if 분석을 실시하였다. 본 연구에서 택한 머신러닝 분류기는 베이지안 네트워크 기반의 TAN (Tree Augmented Naive Bayes), NB (Naive Bayes), S-Spouses(Sons & Spouses), A-markov (Augmented Markov Blanket)이다. 성과분석 결과 본 연구에서 제안한 MBFS 방법이 정확도, 정밀도, F1점수 측면에서 벤치마킹 방법보다 더 우수한 성과를 나타내었다.

Effectiveness of Two-dose Varicella Vaccination: Bayesian Network Meta-analysis

  • Kwan Hong;Young June Choe;Young Hwa Lee;Yoonsun Yoon;Yun-Kyung Kim
    • Pediatric Infection and Vaccine
    • /
    • 제31권1호
    • /
    • pp.55-63
    • /
    • 2024
  • 목적: 수두 감염에 대한 백신 효과성을 높이기 위해 수두백신 2회접종 전략이 여러 국가에 도입이 되었다. 본 연구에서는 Bayesian 모델을 통해 수두 예방 접종 전략의 종합적인 평가와 효과를 제공하고자 한다. 방법: 체계적 문헌고찰을 통해 수집된 연구에 대해 1회 및 2회 접종, 인구특성 및 관심대상결과와 같은 결과값들을 수집했다. 다양한 접종 횟수를 포함하는 연구의 경우 동일한 투여 횟수에 대한 데이터를 하나의 그룹으로 집계했다. 수두 백신의 1회 및 2회 접종의 예방 효과는 오즈 비 (OR) 및 해당하는 95% 신뢰 구간 (95% CI)을 기준으로 평가하였다. 결과: 문헌 검색을 통해 총 903개의 연구가 검색되었고, Bayesian 네트워크 메타 분석을 위해 25개의 개입 또는 관찰 연구가 선택되었다. 총 49,265명의 관찰 대상자가 이 연구에 포함되었다. 미접종군과 비교하여, 모든 수두 감염의 OR은 각각 2회 및 1회 접종에 대해 0.087 (95% CI, 0.046-0.164) 및 0.310 (95% CI, 0.198-0.484)이었으며, 이는 각각 1회 및 2회의 VE가 각각 69.0% (95% CI, 51.6-81.2) 및 91.3% (95% CI, 83.6-95.4)에 해당한다. 결론: 체계적인 검토 및 네트워크 메타 분석 결과, 2회 접종 백신 전략은 수두 감염 부담을 크게 감소시키는 것을 확인하였고, 2회 접종을 받은 어린이들은 1회 접종을 받은 어린이들보다 수두 감염 위험이 낮았으며, 유행 발생 시 더 나은 보호를 받는 것을 확인하였다.

표적탐지성능을 이용한 다중상태 소나의 효과도 분석 (The Effectiveness Analysis of Multistatic Sonar Network Via Detection Peformance)

  • 장재훈;구본화;홍우영;김인익;고한석
    • 한국군사과학기술학회지
    • /
    • 제9권1호
    • /
    • pp.24-32
    • /
    • 2006
  • This paper is to analyze the effectiveness of multistatic sonar network based on detection performance. The multistatic sonar network is a distributed detection system that places a source and multi-receivers apart. So it needs a detection technique that relates to decision rule and optimization of sonar system to improve the detection performance. For this we propose a data fusion procedure using Bayesian decision and optimal sensor arrangement by optimizing a bistatic sonar. Also, to analyze the detection performance effectively, we propose the environmental model that simulates a propagation loss and target strength suitable for multistatic sonar networks in real surroundings. The effectiveness analysis on the multistatic sonar network confirms itself as a promising tool for effective allocation of detection resources in multistatic sonar system.

Correlated damage probabilities of bridges in seismic risk assessment of transportation networks: Case study, Tehran

  • Shahin Borzoo;Morteza Bastami;Afshin Fallah;Alireza Garakaninezhad;Morteza Abbasnejadfard
    • Earthquakes and Structures
    • /
    • 제26권2호
    • /
    • pp.87-96
    • /
    • 2024
  • This paper proposes a logistic multinomial regression approach to model the spatial cross-correlation of damage probabilities among different damage states in an expanded transportation network. Utilizing Bayesian theory and the multinomial logistic model, we analyze the damage states and probabilities of bridges while incorporating damage correlation. This correlation is considered both between bridges in a network and within each bridge's damage states. The correlation model of damage probabilities is applied to the seismic assessment of a portion of Tehran's transportation network, encompassing 26 bridges. Additionally, we introduce extra daily traffic time (EDTT) as an operational parameter of the transportation network and employ the shortest path algorithm to determine the path between two nodes. Our results demonstrate that incorporating the correlation of damage probabilities reduces the travel time of the selected network. The average decrease in travel time for the correlated case compared to the uncorrelated case, using two selected EDTT models, is 53% and 71%, respectively.

전자의무기록을 이용한 욕창발생 예측 베이지안 네트워크 모델 개발 (Predictive Bayesian Network Model Using Electronic Patient Records for Prevention of Hospital-Acquired Pressure Ulcers)

  • 조인숙;정은자
    • 대한간호학회지
    • /
    • 제41권3호
    • /
    • pp.423-431
    • /
    • 2011
  • Purpose: The study was designed to determine the discriminating ability of a Bayesian network (BN) for predicting risk for pressure ulcers. Methods: Analysis was done using a retrospective cohort, nursing records representing 21,114 hospital days, 3,348 patients at risk for ulcers, admitted to the intensive care unit of a tertiary teaching hospital between January 2004 and January 2007. A BN model and two logistic regression (LR) versions, model-I and .II, were compared, varying the nature, number and quality of input variables. Classification competence and case coverage of the models were tested and compared using a threefold cross validation method. Results: Average incidence of ulcers was 6.12%. Of the two LR models, model-I demonstrated better indexes of statistical model fits. The BN model had a sensitivity of 81.95%, specificity of 75.63%, positive and negative predictive values of 35.62% and 96.22% respectively. The area under the receiver operating characteristic (AUROC) was 85.01% implying moderate to good overall performance, which was similar to LR model-I. However, regarding case coverage, the BN model was 100% compared to 15.88% of LR. Conclusion: Discriminating ability of the BN model was found to be acceptable and case coverage proved to be excellent for clinical use.

정서재활 바이오피드백을 위한 얼굴 영상 기반 정서인식 연구 (Study of Emotion Recognition based on Facial Image for Emotional Rehabilitation Biofeedback)

  • 고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제16권10호
    • /
    • pp.957-962
    • /
    • 2010
  • If we want to recognize the human's emotion via the facial image, first of all, we need to extract the emotional features from the facial image by using a feature extraction algorithm. And we need to classify the emotional status by using pattern classification method. The AAM (Active Appearance Model) is a well-known method that can represent a non-rigid object, such as face, facial expression. The Bayesian Network is a probability based classifier that can represent the probabilistic relationships between a set of facial features. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with FACS (Facial Action Coding System) for automatically modeling and extracting the facial emotional features. To recognize the facial emotion, we use the DBNs (Dynamic Bayesian Networks) for modeling and understanding the temporal phases of facial expressions in image sequences. The result of emotion recognition can be used to rehabilitate based on biofeedback for emotional disabled.

SDN 환경에서 효율적 Flow 전송을 위한 전송 지연 평가 기반 부하 분산 기법 연구 (Transmission Delay Estimation-based Forwarding Strategy for Load Distribution in Software-Defined Network)

  • 김도현;홍충선
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권5호
    • /
    • pp.310-315
    • /
    • 2017
  • Software-Defined Network의 등장은 하드웨어적인 네트워크 기능들을 소프트웨어적인 형태의 모듈로 Controller에 보다 유연하게 적용시키도록 함으로써 전통적인 네트워크의 구조를 변화시키고 있다. 이러한 환경 속에서 최근 네트워크 트래픽에 대한 Quality of Service 및 자원관리와 같은 다양한 관점에서의 네트워크 관리정책에 대한 연구개발이 진행되고 있고, 이러한 관리정책을 뒷받침 할 수 있는 네트워크 모니터링에 대한 기법들 또한 제시되어 왔다. 이에 본 논문에서는 기계 학습 기법인 Naive Bayesian Classification을 통하여 Flow를 분류한 후, 전송 지연 측정 모듈을 통하여 효율적인 전송경로를 선정하는 기법을 제안한다. 이는 다양한 대역폭을 갖는 여러 경로들로 이루어진 네트워크상에서 효율적인 경로 분배 역할을 할 수 있고, 부하를 분산시킴으로써 보다 원활한 네트워크 환경 및 서비스 품질을 제공할 수 있다.

자력(自力) RBF 신경망 등화기 (Self Organizing RBF Neural Network Equalizer)

  • 김정수;정정화
    • 전자공학회논문지CI
    • /
    • 제39권1호
    • /
    • pp.35-47
    • /
    • 2002
  • 본 논문은 디지털 통신 채널의 등화를 위한 자력 RBF 신경망 등화기를 제안한다. RBF 신경망을 이용한 등화기에서, 이상적인 채널 상태인 RBF 센터를 정확하고 빠르게 추정하는 것이 가장 중요하다. 그러나, 기존의 RBF 등화기는 채널 상태의 개수를 사전에 알아야 하며, 많은 수의 센터가 필요하다는 단점을 지니므로 실제 통신 시스템에 이용되지 않는다. 본 논문에서 제안하는 자력 RBF 신경망 등화기는 등화에 필요한 RBF 센터를 새로운 추가 기준과 제거 기준에 의해 등화기로 입력되는 신호 중에서 스스로 선택하기 때문에 채널 상태의 개수에 대한 사전 정보 없이도 등화가 가능하다. 또한 제안된 등화기는 LMS 알고리즘과 클러스터링을 이용하는 훈련 과정을 통해 기존 RBF 등화기보다 적은 센터만으로도 등화가 가능한 장점을 갖는다. 선형 및 비선형 채널과 표준 전화 채널에서, 제안한 등화기와 최적 Bayesian 등화기의 BER 성능, 심볼결정 경계, 센터 수 등을 비교하였다. 그 결과 제안한 등화기는 Bayesian 등화기와 거의 동일한 성능을 나타냄을 알 수 있었다.