• Title/Summary/Keyword: Bayesian multiple hypothesis test

Search Result 3, Processing Time 0.018 seconds

Bayesian Testing for the Equality of K-Lognormal Populations (부분 베이즈요인을 이용한 K개로 로그정규분포의 상등에 관한 베이지안 다중검정)

  • 문경애;김달호
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.2
    • /
    • pp.449-462
    • /
    • 2001
  • 베이지안 다중 검정방법(multiple hypothesis test)은 여러 통계모형에서 성공적인 결과를 주는 것으로 알려져있다. 일반적으로, 베이지안 가설검정은 고려중인 모형에 대한 사후확률을 계산하여 가장 높은 확률은 갖는 모형을 선택하기 때문에 귀무가설의 기각여부에만 관심을 가지는 고전적인 분산분석 검정과는 달리 좀 더 구체적인 모형을 선택할 수 있는 장점이 있다. 이 논문에서는 독립이면서 로그정규분포를 따르는 K($\geq$3)개 모집단의 모수에 대한 가설 검정방법으로 O’Hagan(1995)이 제안한 부분 베이즈 요인을 이용한 베이지안 방법을 제안한다. 이 때 모수에 대한 사전분포로는 무정보적 사전분포를 사용한다. 제안한 검정 방법의 유용성을 알아보기 위하여 실제 자료의 분석과 모의 실험을 이용하여 고전적인 검정방법과 그 결과를 비교한다.

  • PDF

Quality Variable Prediction for Dynamic Process Based on Adaptive Principal Component Regression with Selective Integration of Multiple Local Models

  • Tian, Ying;Zhu, Yuting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1193-1215
    • /
    • 2021
  • The measurement of the key product quality index plays an important role in improving the production efficiency and ensuring the safety of the enterprise. Since the actual working conditions and parameters will inevitably change to some extent with time, such as drift of working point, wear of equipment and temperature change, etc., these will lead to the degradation of the quality variable prediction model. To deal with this problem, the selective integrated moving windows based principal component regression (SIMV-PCR) is proposed in this study. In the algorithm of traditional moving window, only the latest local process information is used, and the global process information will not be enough. In order to make full use of the process information contained in the past windows, a set of local models with differences are selected through hypothesis testing theory. The significance levels of both T - test and χ2 - test are used to judge whether there is identity between two local models. Then the models are integrated by Bayesian quality estimation to improve the accuracy of quality variable prediction. The effectiveness of the proposed adaptive soft measurement method is verified by a numerical example and a practical industrial process.

An Application of Dirichlet Mixture Model for Failure Time Density Estimation to Components of Naval Combat System (디리슈레 혼합모형을 이용한 함정 전투체계 부품의 고장시간 분포 추정)

  • Lee, Jinwhan;Kim, Jung Hun;Jung, BongJoo;Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • Reliability analysis of the components frequently starts with the data that manufacturer provides. If enough failure data are collected from the field operations, the reliability should be recomputed and updated on the basis of the field failure data. However, when the failure time record for a component contains only a few observations, all statistical methodologies are limited. In this case, where the failure records for multiple number of identical components are available, a valid alternative is combining all the data from each component into one data set with enough sample size and utilizing the useful information in the censored data. The ROK Navy has been operating multiple Patrol Killer Guided missiles (PKGs) for several years. The Korea Multi-Function Control Console (KMFCC) is one of key components in PKG combat system. The maintenance record for the KMFCC contains less than ten failure observations and a censored datum. This paper proposes a Bayesian approach with a Dirichlet mixture model to estimate failure time density for KMFCC. Trends test for each component record indicated that null hypothesis, that failure occurrence is renewal process, is not rejected. Since the KMFCCs have been functioning under different operating environment, the failure time distribution may be a composition of a number of unknown distributions, i.e. a mixture distribution, rather than a single distribution. The Dirichlet mixture model was coded as probabilistic programming in Python using PyMC3. Then Markov Chain Monte Carlo (MCMC) sampling technique employed in PyMC3 probabilistically estimated the parameters' posterior distribution through the Dirichlet mixture model. The simulation results revealed that the mixture models provide superior fits to the combined data set over single models.