• 제목/요약/키워드: Bayesian image fusion

검색결과 12건 처리시간 0.023초

Evaluation of Geo-based Image Fusion on Mobile Cloud Environment using Histogram Similarity Analysis

  • Lee, Kiwon;Kang, Sanggoo
    • 대한원격탐사학회지
    • /
    • 제31권1호
    • /
    • pp.1-9
    • /
    • 2015
  • Mobility and cloud platform have become the dominant paradigm to develop web services dealing with huge and diverse digital contents for scientific solution or engineering application. These two trends are technically combined into mobile cloud computing environment taking beneficial points from each. The intention of this study is to design and implement a mobile cloud application for remotely sensed image fusion for the further practical geo-based mobile services. In this implementation, the system architecture consists of two parts: mobile web client and cloud application server. Mobile web client is for user interface regarding image fusion application processing and image visualization and for mobile web service of data listing and browsing. Cloud application server works on OpenStack, open source cloud platform. In this part, three server instances are generated as web server instance, tiling server instance, and fusion server instance. With metadata browsing of the processing data, image fusion by Bayesian approach is performed using functions within Orfeo Toolbox (OTB), open source remote sensing library. In addition, similarity of fused images with respect to input image set is estimated by histogram distance metrics. This result can be used as the reference criterion for user parameter choice on Bayesian image fusion. It is thought that the implementation strategy for mobile cloud application based on full open sources provides good points for a mobile service supporting specific remote sensing functions, besides image fusion schemes, by user demands to expand remote sensing application fields.

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.

베이지안 영상융합을 적용한 모바일 클라우드 성능실험 (A Performance Test of Mobile Cloud Service for Bayesian Image Fusion)

  • 강상구;이기원
    • 대한원격탐사학회지
    • /
    • 제30권4호
    • /
    • pp.445-454
    • /
    • 2014
  • 현재 정보통신기술 분야의 핵심 용어라고 할 수 있는 클라우드, 빅데이터, 모바일 등이 다양한 플랫폼 및 서비스에 따라 상호 연결되면서 활용되고 있다. 특히 모바일과 연계된 클라우드는 모바일의 장점과 클라우드 컴퓨팅 기술 적용에 따른 장점을 모두 유지하고 향상시킬 수 있다. 그러나 아직 다른 나라에서도 공간영상정보의 처리나 분석 등과 같은 모바일 공공 클라우드 서비스를 제공하는 사례는 거의 없으며 실무적인 적용을 위한 실험 연구가 필요한 상황이다. 이번 연구에서는 위성영상정보의 베이지안 영상융합 기법을 적용한 모바일 클라우드 서비스 성능 실험을 수행하였다. 두 가지 플랫폼을 대상으로 하였는바, Amazon 클라우드 서비스 환경과 오픈소스 기반의 클라우드 컴퓨팅 환경인 OpenStack을 기반으로 한 자체적인 클라우드 환경을 구축하였다. 모바일 클라우드 성능 비교에 대한 기준이 아직 설정되어 있지 않는 실정이므로 가능한 간단하고 유사한 실험 조건을 적용한 실험 결과로 두 가지 클라우드 환경에서 처리 결과가 큰 차이는 없는 것으로 나타났다. 이는 오픈소스 기반의 모바일 클라우드 환경을 공간정보 서비스 분야에서도 충분히 적용할 수 있음을 의미한다.

다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템 (Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm)

  • 염홍기;주종태;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.20-26
    • /
    • 2008
  • 지능형 로봇이나 컴퓨터가 일상생활 속에서 차지하는 비중이 점점 높아짐에 따라 인간과의 상호교류도 점점 중요시되고 있다. 이렇게 지능형 로봇(컴퓨터) - 인간의 상호 교류하는데 있어서 감정 인식 및 표현은 필수라 할 수 있겠다. 본 논문에서는 음성 신호와 얼굴 영상에서 감정적인 특징들을 추출한 후 이것을 Bayesian Learning과 Principal Component Analysis에 적용하여 5가지 감정(평활, 기쁨, 슬픔, 화남, 놀람)으로 패턴을 분류하였다. 그리고 각각 매개체의 단점을 보완하고 인식률을 높이기 위해서 결정 융합 방법과 특징 융합 방법을 적용하여 감정 인식 실험을 하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 인식 실험을 하였으며, 특징 융합 방법은 SFS(Sequential Forward Selection) 특징 선택 방법을 통해 우수한 특징들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 인식 실험을 실행하였다. 그리고 인식된 결과 값을 2D 얼굴 형태에 적용하여 감정을 표현하였다.

퍼지 알고리즘의 융합에 의한 다중분광 영상의 패턴분류 (Pattern Classification of Multi-Spectral Satellite Images based on Fusion of Fuzzy Algorithms)

  • 전영준;김진일
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권7호
    • /
    • pp.674-682
    • /
    • 2005
  • 본 논문에서는 다중분광 영상의 분류를 위하여 퍼지 G-K(Gustafson- Kessel) 알고리즘과 PCM 알고리즘을 융합한 분류방법을 제안하였다. 제안된 방법은 학습데이타를 이용하여 퍼지 G-K 알고리즘을 수행한 후 그 결과를 이용하여 PCM 알고리즘을 수행한다 PCM 알고리즘과 퍼지 G-K 알고리즘 분류결과를 비교하여 그 결과가 일치하면 해당 항목으로 분류항목을 결정한다. 일치하지 않는 화소는 PCM 알고리즘의 평균내부거리 안쪽에 있는 화소들을 새로운 학습데이타로 하여 베이시안 최대우도 분류를 수행하여 분류항목을 결정한다. 평균내부거리 안쪽에 있는 화소 데이타는 정규분포형태를 보여준다. 다차원 다중분광 영상인 IKONOS와 LANDSAT TM 위성영상을 이용하여 제안된 알고리즘의 효율성을 검증한 결과 퍼지 G-K 알고리즘과 PCM 알고리즘 그리고 전통적인 분류 방법인 최대우도 분류 알고리즘보다 전체 정확도가 더 높은 결과를 얻을 수 있었다

거리영상과 밝기영상의 fusion을 이용한 영상분할 (Image Segmentation Based on Fusion of Range and Intensity Images)

  • 장인수;박래홍
    • 전자공학회논문지S
    • /
    • 제35S권9호
    • /
    • pp.95-103
    • /
    • 1998
  • 본 논문에서는 거리영상과 발기영상의 fusion을 이용한 영상분할을 제안한다. Bayes 이론을 기반으로 하여 Markov random field (MRF)로 선험적인 정보를 모델링한다. 거리영상과 밝기영상에서 추출한 특징을 이용하여 maximum a posteriori (MAP) 추정기를 구성한다. 거리영상에서 물체는 국부적인 평면으로 근사되어 각 점마다 평면 계수를 추정해 계수 공간을 구성한다. 밝기영상에서는 ${\alpha}$ 트림드 (${\alpha}$-trimmed) 분산이 밝기특성을 구성한다. 각 공간상의 특징을 에지에 대한 likelihood를 설정하여 구성된 MAP 추정기를 최적화함으로써 영상을 분할한다. 모의실험을 통해 제안된 구조가 그림자, 잡음 그리고 광원의 blurring에 관계없이 영상을 잘 분할한 것을 보였다.

  • PDF

음성 신호와 얼굴 영상을 이용한 특징 및 결정 융합 기반 감정 인식 방법 (Emotion Recognition Method based on Feature and Decision Fusion using Speech Signal and Facial Image)

  • 주종태;양현창;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.11-14
    • /
    • 2007
  • 인간과 컴퓨터간의 상호교류 하는데 있어서 감정 인식은 필수라 하겠다. 그래서 본 논문에서는 음성 신호 및 얼굴 영상을 BL(Bayesian Learning)과 PCA(Principal Component Analysis)에 적용하여 5가지 감정 (Normal, Happy, Sad, Anger, Surprise) 으로 패턴 분류하였다. 그리고 각각 신호의 단점을 보완하고 인식률을 높이기 위해 결정 융합 방법과 특징 융합 방법을 이용하여 감정융합을 실행하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 융합하였으며, 특정 융합 방법은 SFS(Sequential Forward Selection)특정 선택 방법을 통해 우수한 특정들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 융합을 실행하였다.

  • PDF

형상 정보와 모션 정보 융합을 통한 움직이는 물체 인식 (Moving Object Classification through Fusion of Shape and Motion Information)

  • 김정호;고한석
    • 전자공학회논문지CI
    • /
    • 제43권5호
    • /
    • pp.38-47
    • /
    • 2006
  • 기존의 인식 방법은 물체에 대한 형상 정보 또는 움직임을 특징으로 한 단일 인식기를 사용한다. 하지만, 기존의 단일 특징 기반의 단일 인식기를 사용하는 방법의 인식 성능은 물체의 영역에 대한 정확한 검출에 크게 의존하는 단점을 가진다. 본 논문에서는 이러한 기존 인식방법의 단점을 해결하고, 인식의 신뢰성을 높이기 위해서 세 가지 인식기에 의한 각 결과를 Bayesian을 이용하여 융합하는 새로운 인식 방법을 제안한다. 첫 번째 인식기는 푸리에 묘사자로부터 얻은 형상 정보를 특징으로 한 신경망을 사용하고, 두 번째 인식기는 형상 정보에 대한 기울기를 바탕으로 한 통계적인 방법을 사용한다. 또한. 세 번째 인식기는 검출된 물체의 일정 부분의 움직임에 대한 모션 정보를 특징으로 하여 인식한다. 본 논문의 실험결과에서 제안한 결과 융합방법은 기존의 Majority Voting과 Weight Average Score 방법에 비해서 더 우수한 인식 성능을 보여준다.

Parzen 윈도우 추정에 기반한 다중 초점 이미지 융합 기법 (Multi-focus Image Fusion Technique Based on Parzen-windows Estimates)

  • ;박대철
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.75-88
    • /
    • 2008
  • 본 논문은 입력 이미지 블록의 클래스 조건부 확률 밀도 함수의 커널 추정에 기반한 공간 영역에서의 다중초점 이미지 융합 기법을 제안한다. 이미지 융합 문제를 시험 패턴으로부터 추정된 유사 밀도 함수에 의해 사후 클래스 확률, P($w_{i}{\mid}B_{ikl}$),을 계산하는 분류 임무로 접근하였다. C개의 입력 이미지 $I_{i}$에 대하여 제안한 방법은 i 클래스 $w_{i}$를 정의하고 베이즈 결정 원리에 기초하여 판별 함수를 최대화하는 PxQ 블록 $B_{ikl}$의 집합에 의해 표현되는 결정 지도로 부터 융합 이미지 Z(k,l)를 형성한다. 출력 화질의 척도로서 RMSE 와 상호 정보량인 MI를 사용하여 제안한 기법의 성능이 평가되었다. 커널 함수의 폭 ${\sigma}$ 도 변화시키고, 다른 종류의 커널과 블록 크기를 변화시켜 가며 성능평가를 수행하였다. 제안한 가법은 C=2 와 C=3에 대하여 시험하였고 시험 결과는 좋은 성능을 보였다.

  • PDF

이동 로봇의 강인 위치 추정을 위한 단안 비젼 센서와 레이저 구조광 센서의 베이시안 센서융합 (Bayesian Sensor Fusion of Monocular Vision and Laser Structured Light Sensor for Robust Localization of a Mobile Robot)

  • 김민영;안상태;조형석
    • 제어로봇시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.381-390
    • /
    • 2010
  • This paper describes a procedure of the map-based localization for mobile robots by using a sensor fusion technique in structured environments. A combination of various sensors with different characteristics and limited sensibility has advantages in view of complementariness and cooperation to obtain better information on the environment. In this paper, for robust self-localization of a mobile robot with a monocular camera and a laser structured light sensor, environment information acquired from two sensors is combined and fused by a Bayesian sensor fusion technique based on the probabilistic reliability function of each sensor predefined through experiments. For the self-localization using the monocular vision, the robot utilizes image features consisting of vertical edge lines from input camera images, and they are used as natural landmark points in self-localization process. However, in case of using the laser structured light sensor, it utilizes geometrical features composed of corners and planes as natural landmark shapes during this process, which are extracted from range data at a constant height from the navigation floor. Although only each feature group of them is sometimes useful to localize mobile robots, all features from the two sensors are simultaneously used and fused in term of information for reliable localization under various environment conditions. To verify the advantage of using multi-sensor fusion, a series of experiments are performed, and experimental results are discussed in detail.