The focus of this study is to analyse dynamic relationship among BDI(Baltic Dry-bulk Index, hereafter BDI), forex market and industrial production using monthly data from 2003-2013. Specifically, we have focused on the investigations how monetary and real variable affect shipping industry during recession period. To compare performance between general VAR and Bayesian VAR we first examine DAG(Directed Acyclic Graph) to clarify causality among the variables and then employ MSFE(mean squared forecast error). The overall estimated results from impulse-response analysis imply that BDI has been strongly affected by other shock, such as forex market and industrial production in Bayesian VAR. In particular, Bayesian VAR show better performance than general VAR in forecasting.
The paper analyzes and compares the effects of domestic monetary policy using DSGE, DSGE-VAR, and VAR based on a two-country open economy model of Korea and the U.S. According to impulse response analysis, a domestic interest rate hike raises won value in the case of DSGE and DSGE-VAR models, while in the case of the unrestricted VAR model, it lowers won value. In the marginal data density standard, DSGE-VAR (${\mu}=1$) is superior to DSGE or Bayesian VAR over the sample period. Conversely, in the in-sample RMSE criterion, especially for the won/dollar exchange rate, VARs are superior to DSGE or DSGE-VAR. It is necessary to study further if these differences are caused by model misspecification or omitted variable bias.
Ahn, Ji Young;Hong, Kyung Nak;Lee, Jei Wan;Yang, Byung Hoon
Journal of Korean Society of Forest Science
/
v.102
no.4
/
pp.560-565
/
2013
Population genetic structure and diversity of Ulmus davidiana var. japonica in South Korea were studied using ISSR markers. A total of 45 polymorphic ISSR amplicons were cropped from 7 ISSR primers and 171 individuals of 7 populations. The average of effective alleles and the proportion of polymorphic loci were 1.5 and 89% respectively. The Shannon's diversity index (I) was 0.435 and the expected heterozygosity from the frequentist's method ($H_e$) and the Bayesian inference (hs) were 0.289 and 0.323 respectively. From AMOVA, 4.2% of total genetic variation in the elm populations was explained with the difference among populations (${\Phi}_{ST}=0.042$) and the other 95.8% was distributed within populations. The ${\theta}^{II}$ value by Bayesian method which was comparable to the FST was 0.043. So the level of genetic diversity in the elm populations was similar to that in Genus Ulmus and the level of genetic differentiation was lower than that of others. No population showed a significant difference in the population-specific fixation indices (average of $PS-F_{IS}=0.822$) or the population-specific genetic differentiations (average of $PS-F_{ST}=0.101$). Seven populations were allocated into 3 groups in the UPGMA and the PCA, but the grouping patterns were different. Also, we could not confirm any geographic trend from Bayesian clustering.
River and groundwater stages are the main elements in the hydrologic cycle. They are spatially correlated and can be used to evaluate hydrological and agricultural drought. Stochastic simulation is often performed independently on hydrological variables that are spatiotemporally correlated. In this setting, interdependency across mutual variables may not be maintained. This study proposes the Bayesian vector autoregression model (VAR) to capture the interdependency between multiple variables over time. VAR models systematically consider the lagged stages of each variable and the lagged values of the other variables. Further, an autoregressive model (AR) was built and compared with the VAR model. It was confirmed that the VAR model was more effective in reproducing observed interdependency (or cross-correlation) between river and ground stages, while the AR generally underestimated that of the observed.
This study empirically investigates the international transmission of China's uncertainty shocks. It estimates a time-varying parameter Bayesian global structural vector autoregressive model (TVP-BGVAR) using time series data for 33 countries to evaluate heterogeneous international linkage across countries and time. Uncertainty shocks are identified via sign restrictions. The empirical results reveal that an increase in uncertainty in China negatively affects the global economy, but those effects significantly vary over time. The effects of China's uncertainty shocks on the global economy have been significantly altered by China's WTO accession, the global financial crisis, and the recent US-China trade conflict. Furthermore, the effects of China's uncertainty shocks, typically on inflation, differ significantly across countries. Moreover, Trade openness appears crucial in explaining heterogeneous GDP responses across countries, whereas the international dimension of monetary policy appears to be important in explaining heterogeneous inflation responses across countries.
The Journal of Asian Finance, Economics and Business
/
v.9
no.2
/
pp.37-47
/
2022
This study uses monthly data from January 2009 to December 2020 to examine the effectiveness of foreign currency intervention and its influence on monetary policy in Vietnam using a Hierarchical Bayesian VAR model. The findings suggest that foreign exchange intervention has little influence on the exchange rate level or exports, but it can significantly minimize exchange rate volatility. As a result, we can demonstrate that the claim that Vietnam is a currency manipulator is false. As well, the forecast error variance decomposition results reveal that interest rate differentials mainly determine the exchange rate level instead of foreign exchange intervention. Moreover, the findings suggest that foreign exchange intervention is not effectively sterilized in Vietnam. Inflation is caused by an increase in international reserves, which leads to an expansion of the money supply and a decrease in interest rates. Although the impact of foreign exchange intervention grows in tandem with the growth of international reserves, if the sterilizing capacity does not improve, rising foreign exchange intervention will instead result in inflation. Finally, we use a rolling window approach to examine the time-varying effect of foreign exchange intervention.
Although asset price is an important factor in determining changes in external balances, no studies have investigated it from the Chinese perspective. In this study, I empirically examine the underlying driving forces of China's trade balances, particularly the role of asset price and the real exchange rate. To this end, I estimate a sign-restricted structural vector autoregressive model with quarterly time series data for China, using the Bayesian method. The results show that changes in asset price affect China's trade balances through private consumption and investment. Also, an appreciation of the real exchange rate tends to deteriorate trade balances in China. Furthermore, forecast error variance decomposition results indicate that changes in asset price (stock price and housing price) explain about 20% variability of trade balances, while changes in the real exchange rate can explain about 10%.
The Journal of Asian Finance, Economics and Business
/
v.9
no.3
/
pp.181-193
/
2022
This paper seeks to investigate major macroeconomic factors and bond yield interactions in Thai bond markets, with the goal of forecasting future bond yields. This study examines the best predictive yields for future bond yields at different maturities of 1-, 3-, 5-, 7-, and 10-years using time series data of economic indicators covering the period from 1998 to 2020. The empirical findings support the hypothesis that macroeconomic factors influence bond yield fluctuations. In terms of forecasting future bond yields, static predictions reveal that in most cases, the BVAR model offers the best predictivity of bond rates at various maturities. Furthermore, the BVAR model has the best performance in dynamic rolling-window, forecasting bond yields with various maturities for 2-, 4-, and 8-quarters. The findings of this study imply that the BVAR model forecasts future yields more accurately and consistently than other competitive models. Our research could help policymakers and investors predict bond yield changes, which could be important in macroeconomic policy development.
In this study, the relationship between Baltic Dry Index(BDI) and maritime trade volume in the dry cargo market was verified using the vector autoregressive (VAR) model. Data was analyzed from 1992 to 2018 for iron ore, steam coal, coking coal, grain, and minor bulks of maritime trade volume and BDI. Granger causality analysis showed that the BDI affects the trade volume of coking coal and minor bulks but the trade volume of iron ore, steam coal and grain do not correlate with the BDI freight index. Impulse response analysis showed that the shock of BDI had the greatest impact on coking coal at the two years lag and the impact was negligible at the ten years lag. In addition, the shock of BDI on minor cargoes was strongest at the three years lag, and were negligible at the ten years lag. This study examined the relationship between maritime trade volume and BDI in the dry bulk shipping market in which uncertainty is high. As a result of this study, there is an economic aspect of sustainability that has helped the risk management of shipping companies. In addition, it is significant from an academic point of view that the long-term relationship between the two time series was analyzed through the causality test between variables. However, it is necessary to develop a forecasting model that will help decision makers in maritime markets using more sophisticated methods such as the Bayesian VAR model.
Various statistical models to Estimate GDP (measured as a nation's economic situation) have been developed. In this paper an autoregressive distributed lag model, factor model, and a Bayesian VAR model estimate quarterly GDP as a single model; the combined estimates were evaluated to compare a single model. Subsequently, we suggest that some combined models are better than a single model to estimate quarterly GDP.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.