• Title/Summary/Keyword: Bayesian Reasoning

Search Result 42, Processing Time 0.041 seconds

Reasoning Non-Functional Requirements Trade-off in Self-Adaptive Systems Using Multi-Entity Bayesian Network Modeling

  • Saeed, Ahmed Abdo Ali;Lee, Seok-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2019
  • Non-Functional Requirements (NFR) play a crucial role during the software development process. Currently, NFRs are considered more important than Functional Requirements and can determine the success of a software system. NFRs can be very complicated to understand due to their subjective manner and especially their conflicting nature. Self-adaptive systems (SAS) are operating in dynamically changing environment. Furthermore, the configuration of the SAS systems is dynamically changing according to the current systems context. This means that the configuration that manages the trade-off between NFRs in this context may not be suitable in another. This is because the NFRs satisfaction is based on a per-context basis. Therefore, one context configuration to satisfy one NFR may produce a conflict with another NFR. Furthermore, current approaches managing Non-Functional Requirements trade-off stops managing them during the system runtime which of concern. To solve this, we propose fragmentizing the NFRs and their alternative solutions in form of Multi-entity Bayesian network fragments. Consequently, when changes occur, our system creates a situation specific Bayesian network to measure the impact of the system's conditions and environmental changes on the NFRs satisfaction. Moreover, it dynamically decides which alternative solution is suitable for the current situation.

Context-based Service Reasoning Model for user by User Environment Information (사용자환경정보 기반 Context-based Service 추론모델)

  • Go, Gwang-Eun;Jang, In-Hun;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.63-66
    • /
    • 2007
  • 기존의 홈네트워크 시스템에서 사용자의 단순한 명령을 통해 서비스를 제공하는 기술은 이미 구현되어 있다. 그렇지만 가정이라는 환경은 이렇게 단순한 환경이기보다, 다수의 가족 구성원으로 이루어져 있으며 그에 따른 다양한 명령과 상황이 존재하고 있다. 이러한 다변화된 특성에 맞추어 사용자의 단순 명령보다 한 단계 높은 수준으로 사용자의 욕구를 능동적으로 추론해 낼 수 있는 모델의 제안이 필요하다. 본 논문에서 베이지안 네트워크를 활용하여 사용자의 주변 환경 정보로 규정된 Context를 인식하고 인식된 결과를 통해 사용자가 요구하는 적합한 서비스(Context-based Service)를 추론해 낼 수 있는 모델을 제시하고자 한다.

  • PDF

Reasoning Occluded Objects in Indoor Environment Using Bayesian Network for Robot Effective Service (로봇의 효과적인 서비스를 위해 베이지안 네트워크 기반의 실내 환경의 가려진 물체 추론)

  • Song Youn-Suk;Cho Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 2006
  • Recently the study on service robots has been proliferated in many fields, and there are active developments for indoor services such as supporting for elderly people. It is important for robot to recognize objects and situations appropriately for effective and accurate service. Conventional object recognition methods have been based on the pre-defined geometric models, but they have limitations in indoor environments with uncertain situation such as the target objects are occluded by other ones. In this paper we propose a Bayesian network model to reason the probability of target objects for effective detection. We model the relationships between objects by activities, which are applied to non-static environments more flexibly. Overall structure is constructed by combining common-cause structures which are the units making relationship between objects, and it makes design process more efficient. We test the performance of two Bayesian networks for verifying the proposed Bayesian network model through experiments, resulting in accuracy of $86.5\%$ and $89.6\%$ respectively.

A Belief Network Approach for Development of a Nuclear Power Plant Diagnosis System

  • I.K. Hwang;Kim, J.T.;Lee, D.Y.;C.H. Jung;Kim, J.Y.;Lee, J.S.;Ha, C.S .m
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.273-278
    • /
    • 1998
  • Belief network(or Bayesian network) based on Bayes' rule in probabilistic theory can be applied to the reasoning of diagnostic systems. This paper describes the basic theory of concept and feasibility of using the network for diagnosis of nuclear power plants. An example shows that the probabilities of root causes of a failure are calculated from the measured or believed evidences.

  • PDF

Development of Context Awareness and Service Reasoning Technique for Handicapped People (멀티 모달 감정인식 시스템 기반 상황인식 서비스 추론 기술 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.34-39
    • /
    • 2009
  • As a subjective recognition effect, human's emotion has impulsive characteristic and it expresses intentions and needs unconsciously. These are pregnant with information of the context about the ubiquitous computing environment or intelligent robot systems users. Such indicators which can aware the user's emotion are facial image, voice signal, biological signal spectrum and so on. In this paper, we generate the each result of facial and voice emotion recognition by using facial image and voice for the increasing convenience and efficiency of the emotion recognition. Also, we extract the feature which is the best fit information based on image and sound to upgrade emotion recognition rate and implement Multi-Modal Emotion recognition system based on feature fusion. Eventually, we propose the possibility of the ubiquitous computing service reasoning method based on Bayesian Network and ubiquitous context scenario in the ubiquitous computing environment by using result of emotion recognition.

Design of a User Location Prediction Algorithm Using the Flexible Window Scheme (Flexible Window 기법을 이용한 위치 예측 알고리즘 설계)

  • Son, Byoung-Hee;Kim, Yong-Hoon;Nahm, Eui-Seok;Kim, Hag-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.550-557
    • /
    • 2007
  • We predict a context of various structures by using Bayesian Networks Algorithms, Three-Dimensional Structures Algorithms and Genetic Algorithms. However, these algorithms have unavoidable problems when providing a context-aware service in reality due to a lack of practicality and the delay of process time in real-time environment. As far as context-aware system for specific purpose is concerned, it is very hard to be sure about the accuracy and reliability of prediction. This paper focuses on reasoning and prediction technology which provides a stochastic mechanism for context information by incorporating various context information data. The objective of this paper is to provide optimum services to users by suggesting an intellectual reasoning and prediction based on hierarchical context information. Thus, we propose a design of user location prediction algorithm using sequential matching with n-size flexible window scheme by taking user's habit or behavior into consideration. This algorithm improves average 5.10% than traditional algorithms in the accuracy and reliability of prediction using the Flexible Window Scheme.

Bayesian Network-Based Analysis on Clinical Data of Infertility Patients (베이지안 망에 기초한 불임환자 임상데이터의 분석)

  • Jung, Yong-Gyu;Kim, In-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.625-634
    • /
    • 2002
  • In this paper, we conducted various experiments with Bayesian networks in order to analyze clinical data of infertility patients. With these experiments, we tried to find out inter-dependencies among important factors playing the key role in clinical pregnancy, and to compare 3 different kinds of Bayesian network classifiers (including NBN, BAN, GBN) in terms of classification performance. As a result of experiments, we found the fact that the most important features playing the key role in clinical pregnancy (Clin) are indication (IND), stimulation, age of female partner (FA), number of ova (ICT), and use of Wallace (ETM), and then discovered inter-dependencies among these features. And we made sure that BAN and GBN, which are more general Bayesian network classifiers permitting inter-dependencies among features, show higher performance than NBN. By comparing Bayesian classifiers based on probabilistic representation and reasoning with other classifiers such as decision trees and k-nearest neighbor methods, we found that the former show higher performance than the latter due to inherent characteristics of clinical domain. finally, we suggested a feature reduction method in which all features except only some ones within Markov blanket of the class node are removed, and investigated by experiments whether such feature reduction can increase the performance of Bayesian classifiers.

MOnCa2: High-Level Context Reasoning Framework based on User Travel Behavior Recognition and Route Prediction for Intelligent Smartphone Applications (MOnCa2: 지능형 스마트폰 어플리케이션을 위한 사용자 이동 행위 인지와 경로 예측 기반의 고수준 콘텍스트 추론 프레임워크)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.295-306
    • /
    • 2015
  • MOnCa2 is a framework for building intelligent smartphone applications based on smartphone sensors and ontology reasoning. In previous studies, MOnCa determined and inferred user situations based on sensor values represented by ontology instances. When this approach is applied, recognizing user space information or objects in user surroundings is possible, whereas determining the user's physical context (travel behavior, travel destination) is impossible. In this paper, MOnCa2 is used to build recognition models for travel behavior and routes using smartphone sensors to analyze the user's physical context, infer basic context regarding the user's travel behavior and routes by adapting these models, and generate high-level context by applying ontology reasoning to the basic context for creating intelligent applications. This paper is focused on approaches that are able to recognize the user's travel behavior using smartphone accelerometers, predict personal routes and destinations using GPS signals, and infer high-level context by applying realization.

K-means Clustering for Environmental Indicator Survey Data

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.185-192
    • /
    • 2005
  • There are many data mining techniques such as association rule, decision tree, neural network analysis, clustering, genetic algorithm, bayesian network, memory-based reasoning, etc. We analyze 2003 Gyeongnam social indicator survey data using k-means clustering technique for environmental information. Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper, we used k-means clustering of several clustering techniques. The k-means clustering is classified as a partitional clustering method. We can apply k-means clustering outputs to environmental preservation and environmental improvement.

  • PDF

Consideration of Multipath Effect in Sonar Map Construction for an Autonomous Mobile Robot (다중반사경로효과를 고려한 자율이동로봇의 초음파지도 형성)

  • 임종환;조동우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.106-112
    • /
    • 1993
  • A new model for the construction of a sonar map in a specular environment has been developed ad implemented. In a real world where most of the object surfaces are specular ones, a sonar sensor suffers from a multipath effect which results in a wrong interpretation of an objects's location. To reduce this effect and hence to construct a reliable map of a robot's surroundings, a probabilistic approach based on Bayesian reasoning is adopted to both evaluation of object orientations and estimation of an occupancy probability of a cell by an object. The usefulness of this approach is illustrated with the results produced by our mobile robot equipped with ultrasonic sensors.

  • PDF