• Title/Summary/Keyword: Bayesian

Search Result 2,727, Processing Time 0.027 seconds

Statistical Applications for the Prediction of White Hispanic Breast Cancer Survival

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Ross, Elizabeth;Shrestha, Alice
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5571-5575
    • /
    • 2014
  • Background: The ability to predict the survival time of breast cancer patients is important because of the potential high morbidity and mortality associated with the disease. To develop a predictive inference for determining the survival of breast cancer patients, we applied a novel Bayesian method. In this paper, we propose the development of a databased statistical probability model and application of the Bayesian method to predict future survival times for White Hispanic female breast cancer patients, diagnosed in the US during 1973-2009. Materials and Methods: A stratified random sample of White Hispanic female patient survival data was selected from the Surveillance Epidemiology and End Results (SEER) database to derive statistical probability models. Four were considered to identify the best-fit model. We used three standard model-building criteria, which included Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) to measure the goodness of fit. Furthermore, the Bayesian method was used to derive future survival inferences for survival times. Results: The highest number of White Hispanic female breast cancer patients in this sample was from New Mexico and the lowest from Hawaii. The mean (SD) age at diagnosis (years) was 58.2 (14.2). The mean (SD) of survival time (months) for White Hispanic females was 72.7 (32.2). We found that the exponentiated Weibull model best fit the survival times compared to other widely known statistical probability models. The predictive inference for future survival times is presented using the Bayesian method. Conclusions: The findings are significant for treatment planning and health-care cost allocation. They should also contribute to further research on breast cancer survival issues.

Complex Segregation Analysis of Categorical Traits in Farm Animals: Comparison of Linear and Threshold Models

  • Kadarmideen, Haja N.;Ilahi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1088-1097
    • /
    • 2005
  • Main objectives of this study were to investigate accuracy, bias and power of linear and threshold model segregation analysis methods for detection of major genes in categorical traits in farm animals. Maximum Likelihood Linear Model (MLLM), Bayesian Linear Model (BALM) and Bayesian Threshold Model (BATM) were applied to simulated data on normal, categorical and binary scales as well as to disease data in pigs. Simulated data on the underlying normally distributed liability (NDL) were used to create categorical and binary data. MLLM method was applied to data on all scales (Normal, categorical and binary) and BATM method was developed and applied only to binary data. The MLLM analyses underestimated parameters for binary as well as categorical traits compared to normal traits; with the bias being very severe for binary traits. The accuracy of major gene and polygene parameter estimates was also very low for binary data compared with those for categorical data; the later gave results similar to normal data. When disease incidence (on binary scale) is close to 50%, segregation analysis has more accuracy and lesser bias, compared to diseases with rare incidences. NDL data were always better than categorical data. Under the MLLM method, the test statistics for categorical and binary data were consistently unusually very high (while the opposite is expected due to loss of information in categorical data), indicating high false discovery rates of major genes if linear models are applied to categorical traits. With Bayesian segregation analysis, 95% highest probability density regions of major gene variances were checked if they included the value of zero (boundary parameter); by nature of this difference between likelihood and Bayesian approaches, the Bayesian methods are likely to be more reliable for categorical data. The BATM segregation analysis of binary data also showed a significant advantage over MLLM in terms of higher accuracy. Based on the results, threshold models are recommended when the trait distributions are discontinuous. Further, segregation analysis could be used in an initial scan of the data for evidence of major genes before embarking on molecular genome mapping.

Improving Correctness in the Satellite Remote Sensing Data Analysis -Laying Stress on the Application of Bayesian MLC in the Classification Stage- (인공위성 원격탐사 데이타의 분석 정확도 향상에 관한 연구 -분류과정에서의 Bayesian MIC 적용을 중심으로-)

  • 안철호;김용일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.81-91
    • /
    • 1991
  • This thesis aims to improve the analysis accuracy of remotely sensed digital imagery, and the improvement is achieved by considering the weight factors(a priori probabilities) of Bayesian MLC in the classification stage. To be concrete, Bayesian decision theory is studied from remote sensing field of view, and the equations in the n-dimensional form are derived from normal probability density functions. The amount of the misclassified pixels is extracted from probability function data using the thres-holding, and this is a basis of evaluating the classification accuracy. The results indicate that 5.21% of accuracy improvement was carried out. The data used in this study is LANDSAT TM(1985.10.21 ; 116-34), and the study area is within the administrative boundary of Seoul.

  • PDF

Landslide Susceptibility Analysis Using Bayesian Network and Semantic Technology (시맨틱 기술과 베이시안 네트워크를 이용한 산사태 취약성 분석)

  • Lee, Sang-Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.61-69
    • /
    • 2010
  • The collapse of a slope or cut embankment brings much damage to life and property. Accordingly, it is very important to analyze the spatial distribution by calculating the landslide susceptibility in the estimation of the risk of landslide occurrence. The heuristic, statistic, deterministic, and probabilistic methods have been introduced to make landslide susceptibility maps. In many cases, however, the reliability is low due to insufficient field data, and the qualitative experience and knowledge of experts could not be combined with the quantitative mechanical?analysis model in the existing methods. In this paper, new modeling method for a probabilistic landslide susceptibility analysis combined Bayesian Network with ontology model about experts' knowledge and spatial data was proposed. The ontology model, which was made using the reasoning engine, was automatically converted into the Bayesian Network structure. Through conditional probabilistic reasoning using the created Bayesian Network, landslide susceptibility with uncertainty was analyzed, and the results were described in maps, using GIS. The developed Bayesian Network was then applied to the test-site to verify its effect, and the result corresponded to the landslide traces boundary at 86.5% accuracy. We expect that general users will be able to make a landslide susceptibility analysis over a wide area without experts' help.

An Improved Joint Bayesian Method using Mirror Image's Features (미러영상 특징을 이용한 Joint Bayesian 개선 방법론)

  • Han, Sunghyu;Ahn, Jung-Ho
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.671-680
    • /
    • 2015
  • The Joint Bayesian[1] method was published in 2012. Since then, it has been used for binary classification in almost all state-of-the-art face recognition methods. However, no improved methods have been published so far except 2D-JB[2]. In this paper we propose an improved version of the JB method that considers the features of both the given face image and its mirror image. In pattern classification, it is very likely to make a mistake when the value of the decision function is close to the decision boundary or the threshold. By making the value of the decision function far from the decision boundary, the proposed method reduces the errors. The experimental results show that the proposed method outperforms the JB and 2D-JB methods by more than 1% in the challenging LFW DB. Many state-of-the-art methods required tons of training data to improve 1% in the LFW DB, but the proposed method can make it in an easy way.

A Design of FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) using Naive Bayesian and Data Mining (나이브 베이지안과 데이터 마이닝을 이용한 FHIDS(Fuzzy Logic based Hybrid Intrusion Detection System) 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • This paper proposes an FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) design that detects anomaly and misuse attacks by using a Naive Bayesian algorithm, Data Mining, and Fuzzy Logic. The NB-AAD(Naive Bayesian based Anomaly Attack Detection) technique using a Naive Bayesian algorithm within the FHIDS detects anomaly attacks. The DM-MAD(Data Mining based Misuse Attack Detection) technique using Data Mining within it analyzes the correlation rules among packets and detects new attacks or transformed attacks by generating the new rule-based patterns or by extracting the transformed rule-based patterns. The FLD(Fuzzy Logic based Decision) technique within it judges the attacks by using the result of the NB-AAD and DM-MAD. Therefore, the FHIDS is the hybrid attack detection system that improves a transformed attack detection ratio, and reduces False Positive ratio by making it possible to detect anomaly and misuse attacks.

Accuracy evaluation of ZigBee's indoor localization algorithm (ZigBee 실내 위치 인식 알고리즘의 정확도 평가)

  • Noh, Angela Song-Ie;Lee, Woong-Jae
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper applies Bayesian Markov inferred localization techniques for determining ZigBee mobile device's position. To evaluate its accuracy, we compare it with conventional technique, map-based localization. While the map-based localization technique referring to database of predefined locations and their RSSI data, the Bayesian Markov inferred localization is influenced by changes of time, direction and distance. All determinations are drawn from the estimation of Received Signal Strength (RSS) using ZigBee modules. Our results show the relationship between RSSI and distance in indoor ZigBee environment and higher localization accuracy of Bayesian Markov localization technique. We conclude that map-based localization is not suitable for flexible changes in indoors because of its predefined condition setup and lower accuracy comparing to distance-based Markov Chain inference localization system.

Travel Time Prediction Algorithm Based on Time-varying Average Segment Velocity using $Na{\ddot{i}}ve$ Bayesian Classification ($Na{\ddot{i}}ve$ Bayesian 분류화 기법을 이용한 시간대별 평균 구간 속도 기반 주행 시간 예측 알고리즘)

  • Um, Jung-Ho;Chowdhury, Nihad Karim;Lee, Hyun-Jo;Chang, Jae-Woo;Kim, Yeon-Jung
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.31-43
    • /
    • 2008
  • Travel time prediction is an indispensable to many advanced traveler information systems(ATIS) and intelligent transportation systems(ITS). In this paper we propose a method to predict travel time using $Na{\ddot{i}}ve$ Bayesian classification method which has exhibited high accuracy and processing speed when applied to classily large amounts of data. Our proposed prediction algorithm is also scalable to road networks with arbitrary travel routes. For a given route, we consider time-varying average segment velocity to perform more accuracy of travel time prediction. We compare the proposed method with the existing prediction algorithms like link-based prediction algorithm [1] and Micro T* algorithm [2]. It is shown from the performance comparison that the proposed predictor can reduce MARE (mean absolute relative error) significantly, compared with the existing predictors.

  • PDF

Using Bayesian network and Intuitionistic fuzzy Analytic Hierarchy Process to assess the risk of water inrush from fault in subsea tunnel

  • Song, Qian;Xue, Yiguo;Li, Guangkun;Su, Maoxin;Qiu, Daohong;Kong, Fanmeng;Zhou, Binghua
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.605-614
    • /
    • 2021
  • Water inrush from fault is one of the most severe hazards during tunnel excavation. However, the traditional evaluation methods are deficient in both quantitative evaluation and uncertainty handling. In this paper, a comprehensive methodology method combined intuitionistic fuzzy AHP with a Bayesian network for the risk assessment of water inrush from fault in the subsea tunnel was proposed. Through the intuitionistic fuzzy analytic hierarchy process to replace the traditional expert scoring method to determine the prior probability of the node in the Bayesian network. After the field data is normalized, it is classified according to the data range. Then, using obtained results into the Bayesian network, conduct a risk assessment with field data which have processed of water inrush disaster on the tunnel. Simultaneously, a sensitivity analysis technique was utilized to investigate each factor's contribution rate to determine the most critical factor affecting tunnel water inrush risk. Taking Qingdao Kiaochow Bay Tunnel as an example, by predictive analysis of fifteen fault zones, thirteen of them are consistent with the actual situation which shows that the IFAHP-Bayesian Network method is feasible and applicable. Through sensitivity analysis, it is shown that the Fissure development and Apparent resistivity are more critical comparing than other factor especially the Permeability coefficient and Fault dip. The method can provide planners and engineers with adequate decision-making support, which is vital to prevent and control tunnel water inrush.

Unsupervised one-class classification for condition assessment of bridge cables using Bayesian factor analysis

  • Wang, Xiaoyou;Li, Lingfang;Tian, Wei;Du, Yao;Hou, Rongrong;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • Cables are critical components of cable-stayed bridges. A structural health monitoring system provides real-time cable tension recording for cable health monitoring. However, the measurement data involve multiple sources of variability, i.e., varying environmental and operational factors, which increase the complexity of cable condition monitoring. In this study, a one-class classification method is developed for cable condition assessment using Bayesian factor analysis (FA). The single-peaked vehicle-induced cable tension is assumed to be relevant to vehicle positions and weights. The Bayesian FA is adopted to establish the correlation model between cable tensions and vehicles. Vehicle weights are assumed to be latent variables and the influences of different transverse positions are quantified by coefficient parameters. The Bayesian theorem is employed to estimate the parameters and variables automatically, and the damage index is defined on the basis of the well-trained model. The proposed method is applied to one cable-stayed bridge for cable damage detection. Significant deviations of the damage indices of Cable SJS11 were observed, indicating a damaged condition in 2011. This study develops a novel method to evaluate the health condition of individual cable using the FA in the Bayesian framework. Only vehicle-induced cable tensions are used and there is no need to monitor the vehicles. The entire process, including the data pre-processing, model training and damage index calculation of one cable, takes only 35 s, which is highly efficient.