This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.
This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.
Wen-Qiang Liu;En-Ze Rui;Lei Yuan;Si-Yi Chen;You-Liang Zheng;Yi-Qing Ni
Smart Structures and Systems
/
제31권4호
/
pp.393-407
/
2023
To assess structural condition in a non-destructive manner, computer vision-based structural health monitoring (SHM) has become a focus. Compared to traditional contact-type sensors, the advantages of computer vision-based measurement systems include lower installation costs and broader measurement areas. In this study, we propose a novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges. First, a deep learning model FairMOT is introduced to track the regions of interest (ROIs) that include joints to enhance the automation performance compared with traditional target tracking algorithms. To calculate the displacement of the tracked ROIs accurately, a normalized cross-correlation method is adopted to fine-tune the offset, while the Harris corner matching is utilized to correct the vibration displacement errors caused by the non-parallel between the truss plane and the image plane. Then, based on the advantages of the stochastic damage locating vector (SDLV) and Bayesian inference-based stochastic model updating (BI-SMU), they are combined to achieve the coarse-to-fine localization of the truss bridge's damaged elements. Finally, the severity quantification of the damaged components is performed by the BI-SMU. The experiment results show that the proposed method can accurately recognize the vibration displacement and evaluate the structural damage.
여러 기후변화 시나리오에 의하면 기상재해의 발생빈도 및 강도가 증가할 것으로 예상된다. 그중 가뭄은 강수량 부족, 하천유량 감소, 토양 함수량 감소, 용수 수요량 증가 등의 다양한 요인으로 인해 발생하며, 한 가지 형태뿐만 아니라 복합적인 형태로 발생할 수 있다. 또한, 우리나라는 지역마다 기후 특성의 편차가 있어 기후변화에 따른 가뭄 취약성과 대응 능력이 지역마다 다르게 나타난다. 따라서 가뭄에 대응하기 위해서는 다양한 요인을 고려한 통합가뭄지수를 활용해야 하며, 미래의 기후변화를 고려하여 종합적으로 가뭄을 평가해야 한다. 본 연구에서는 동적 베이지안 분류기(DNBC) 기반의 통합가뭄지수를 활용하여 우리나라 전국에 대해 수문학적 위험도를 분석하고 미래 가뭄을 전망하였다. 기상학적, 수문학적, 농업적 및 사회경제적 요인을 고려한 통합가뭄지수를 산정하기 위하여 DNBC 분류기의 인자로 기후변화 시나리오 기반의 기상학적 가뭄지수 SPI, 수문학적 가뭄지수 SDI, 농업적 가뭄지수 ESI와 사회경제적 가뭄지수 WSCI를 활용하였다. 산정된 통합가뭄지수의 시계열을 기반으로 심도와 지속기간을 추출하고, 코플라 함수를 활용한 이변량 가뭄빈도분석을 수행하였다. 이후, 이변량 가뭄빈도분석에 의해 산정된 재현기간을 활용하여 수문학적 위험도를 산정하였다. 그 결과, P1(2021~2040) 기간이 수문학적 위험도 R=0.588로 가장 높은 위험도를 나타냈으며, 이후 P2(2041~2070) 기간까지 감소하였다가 P3(2071~2099) 기간에 다시 증가하는 추세를 보였다. P1(2021~2040) 기간과 P3(2071~2099) 기간은 영산강 유역이 각각 R=0.625(P1), R=0.550(P3)으로 가장 높은 위험도를 나타냈으나, P2(2041~2070) 기간은 금강 유역이 수문학적 위험도 R=0.482로 가장 높게 나타났다. 본 연구결과를 통해 향후 미래 가뭄에 대한 가뭄계획 수립 시에 기초자료로서 활용성이 높을 것으로 기대된다.
Objectives: We aimed to estimate the space-time distribution of the risk of suicide mortality in Iran from 2006 to 2016. Methods: In this repeated cross-sectional study, the age-standardized risk of suicide mortality from 2006 to 2016 was determined. To estimate the cumulative and temporal risk, the Besag, York, and Mollié and Bernardinelli models were used. Results: The relative risk of suicide mortality was greater than 1 in 43.0% of Iran's provinces (posterior probability >0.8; range, 0.46 to 3.93). The spatio-temporal model indicated a high risk of suicide in 36.7% of Iran's provinces. In addition, significant upward temporal trends in suicide risk were observed in the provinces of Tehran, Fars, Kermanshah, and Gilan. A significantly decreasing pattern of risk was observed for men (β, -0.013; 95% credible interval [CrI], -0.010 to -0.007), and a stable pattern of risk was observed for women (β, -0.001; 95% CrI, -0.010 to 0.007). A decreasing pattern of suicide risk was observed for those aged 15-29 years (β, -0.006; 95% CrI, -0.010 to -0.0001) and 30-49 years (β, -0.001; 95% CrI, -0.018 to -0.002). The risk was stable for those aged >50 years. Conclusions: The highest risk of suicide mortality was observed in Iran's northwestern provinces and among Kurdish women. Although a low risk of suicide mortality was observed in the provinces of Tehran, Fars, and Gilan, the risk in these provinces is increasing rapidly compared to other regions.
Kim, Shin-Jeong;Oh, Se-Heon;Kim, Minsu;Park, Hye-Jin;Kim, Shinna
천문학회보
/
제46권2호
/
pp.70.1-70.1
/
2021
We examine the HI gas kinematics and distributions of galaxy pairs in group or cluster environments from high-resolution Australian Square Kilometer Array Pathfinder (ASKAP) WALLABY pilot observations. We use 32 well-resolved close pair galaxies from the Hydra, Norma, and NGC 4636, two clusters and a group of which are identified by their spectroscopy information and additional visual inspection. We perform profile decomposition of HI velocity profiles of the galaxies using a new tool, BAYGAUD which allows us to separate a line-of-sight velocity profile into an optimal number of Gaussian components based on Bayesian MCMC techniques. Then, we construct super profiles via stacking of individual HI velocity profiles after aligning their central velocities. We fit a model which consists of double Gaussian components to the super profiles, and classify them as kinematically cold and warm HI gas components with respect to their velocity dispersions, narrower or wider 𝜎, respectively. The kinematically cold HI gas reservoir (M_cold/M_HI) of the paired galaxies is found to be relatively higher than that of unpaired control samples in the clusters and the group, showing a positive correlation with the HI mass in general. Additionally, we quantify the gravitational instability of the HI gas disk of the sample galaxies using their Toomre Q parameters and HI morphological disturbances. While no significant difference is found for the Q parameter values between the paired and unpaired galaxies, the paired galaxies tend to have larger HI asymmetry values which are derived using their moment0 map compared to those of the non-paired control sample galaxies in the distribution.
Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
천문학회보
/
제46권2호
/
pp.70.2-71
/
2021
We examine gas kinematics and star formation activities of NGC 6822, a gas-rich dwarf irregular galaxy in the Local Group at a distance of ~490 kpc. We perform profile decomposition of all the line-of-sight (LOS) HI velocity profiles of the high-resolution (42.4" × 12" spatial; 1.6 km/s spectral) HI data cube of the galaxy, taken with the Australian Telescope Compact Array (ATCA). To this end, we use a novel tool based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, the so-called BAYGAUD, which allows us to decompose a velocity profile into an optimal number of Gaussian components in a quantitative manner. We group all the decomposed components into bulk-narrow, bulk-broad, and non-bulk gas components classified with respect to their velocity dispersions and the amounts of velocity offset from the global kinematics, respectively. Using the surface densities and velocity dispersions of the kinematically decomposed HI gas maps together with the rotation curve of NGC 6822, we derive Toomre-Q parameters for individual regions of the galaxy which quantify the level of local gravitational instability of the gaseous disk. We also measure the local star formation rate (SFR) of the corresponding regions in the galaxy by combining GALEX Far-ultraviolet (FUV) and WISE 22㎛ images. We then relate the gas and SFR surface densities in order to investigate the local Kennicutt-Schmidt (K-S) law of gravitationally unstable regions which are selected from the Toomre Q analysis. Of the three groups, the bulk-narrow, bulk-broad and non-bulk gas components, we find that the lower Toomre-Q values the bulk-narrow gas components have, the more consistent with the linear extension of the K-S law derived from molecular hydrogen (H2) observations.
Skewness and kurtosis are important higher-order statistics for simulating non-Gaussian wind pressure series on low-rise buildings, but their predictions are less studied in comparison with those of the low order statistics as mean and rms. The distribution gradients of skewness and kurtosis on roofs are evidently higher than those of mean and rms, which increases their prediction difficulty. The conventional artificial neural networks (ANNs) used for predicting mean and rms show unsatisfactory accuracy in predicting skewness and kurtosis owing to the limited capacity of shallow learning of ANNs. In this work, the deep neural networks (DNNs) model with the ability of deep learning is introduced to predict the skewness and kurtosis on a low-rise building. For obtaining the optimal generalization of the DNNs model, the hyper parameters are automatically determined by Bayesian Optimization (BO). Moreover, for providing a benchmark for future studies on predicting higher order statistics, the data sets for training and testing the DNNs model are extracted from the internationally open NIST-UWO database, and the prediction errors of all taps are comprehensively quantified by various error metrices. The results show that the prediction accuracy in this study is apparently better than that in the literature, since the correlation coefficient between the predicted and experimental results is 0.99 and 0.75 in this paper and the literature respectively. In the untrained cornering wind direction, the distributions of skewness and kurtosis are well captured by DNNs on the whole building including the roof corner with strong non-normality, and the correlation coefficients between the predicted and experimental results are 0.99 and 0.95 for skewness and kurtosis respectively.
자료동화(data assimilation) 기법은 관측 자료와 예측 모형의 정보를 동시에 활용, 모형의 상태량(state variables)이나 매개변수(model parameters)를 실시간으로 업데이트하는 Bayesian 필터링 이론에 근거한 방법으로, 최근 이를 활용한 수문 모의 정확도 향상 기술이 빠르게 발전하고 있다. 본 연구에서는 앙상블 자료동화의 정확성을 향상시키기 위한 세부 방법인 along-the-stream localization과 inflation 기법의 분포형 수문 모형에 대한 적용성을 대규모 지역 단위(regional-scale) 모의를 통해 검토한다. 분포형 수문모형과 자료동화 framework로는 WRF-Hydro(Weather Research and Forecasting Model Hydrological Modeling System)와 DART(Data Assimilation Research Testbed)를 각각 적용한다. WRF-Hydro는 미국의 전 대륙지역(CONUS; continental United States)에 대한 수문 모델링 framework인 National Water Model의 핵심엔진이고, DART는 미국 National Center for Atmospheric Research(NCAR) 연구소에서 개발한 범용 자료동화 도구이다. 본 연구에서는 지표수 수문모형의 자료동화를 위해 개발된 기법인 along-the-stream localization과 inflation 기법이 하도 추적에 미치는 영향을 분석한다. along-the stream localization 기법은 공간적 근접도 외에 하도의 수문학적 연관관계를 고려하는 localization 기법으로, 상대적으로 수문학적 상관도가 떨어지는 하도에 대한 과도한 자료동화를 줄여줄 수 있다. inflation 기법은 앙상블의 다양성을 증가시키는 기법으로, 칼만 필터(Kalman filter)에 의한 업데이트의 이전이나 이후 적용하여 앙상블 예측의 정확도를 추가적으로 향상시킬 수 있다. 본 고에서는 앙상블 자료동화 기법을 지표수 수문 모의에 적용할 경우 남아 있는 난제와 적용 가능한 방법에 대해 중점적으로 논의한다.
일반적으로 수문빈도해석은 치수계획 수립에 이용되는 설계강수량, 계획홍수량 등을 산정하기 위해 연최대치계열 또는 연초과치계열 자료를 이용한 극치빈도해석을 수행하고, 확률분포의 우측꼬리(right tail) 부분을 이용하여 확장된 재현기간에 해당하는 확률수문량을 추정한다. 하지만 가뭄 관련 분석에서는 확률분포의 좌측꼬리(left tail) 부분은 이용해 확장된 재현기간별 확률수문량을 추정해야할 경우가 발생한다. 또한 물관리 실무에서 장 단기 운영계획 수립을 위해 이용하는 갈수빈도 유입량 산정 등에서도 평년보다 작은 수문량에 대한 빈도해석이 필요한 경우가 있다. 국가 가뭄정보분석센터에서는 기존에 K-water연구원에서 개발한 빈도해석 프로그램인 K-FAT의 분석모듈을 이용해 극소치계열 또는 갈수빈도 유입량 분석에 특화된 가뭄빈도해석 프로그램을 개발하였다. 본 프로그램은 GEV, Gumbel, Weibull 등 14개의 확률분포형을 포함하며, 모멘트법, 최우도법 및 L-모멘트법을 사용하여 매개변수를 추정한다. 적합도 검정의 경우 χ2, K-S, CVM, PPCC 및 수정 Anderson-Darling test를 이용하여 다각적인 검정을 할 수 있도록 하였다. 분석을 위한 입력 자료의 경우 사용자가 전처리를 통해 준비한 연최소치계열 등 연도별 시계열자료를 이용할 수 있으며, 일단위 및 월단위의 강수량 또는 댐 유입량 자료를 이용해 사용자가 원하는 기간의 누적강수량, 평균 유입량으로 변환할 수 있는 자료변환 기능을 추가하여 실무 활용성을 높였다. 또한 최적 확률분포 선정을 위해 참고할 수 있도록 AIC(Akaike information criteria)와 BIC(Bayesian information criteria) 분석이 포함되어 있으며, Bootstrap 기법 등을 이용한 불확실성 산정을 통해 추정 값의 신뢰구간을 표시하도록 하였다. 개발된 프로그램은 베타버전 시험배포를 거쳐 가뭄정보포털을 통해 배포할 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.