• 제목/요약/키워드: Bayes Rule

검색결과 61건 처리시간 0.025초

선호도 재계산을 위한 연관 사용자 군집 분석과 Representative Attribute -Neighborhood를 이용한 협력적 필터링 시스템의 성능향상 (Performance Improvement of Collaborative Filtering System Using Associative User′s Clustering Analysis for the Recalculation of Preference and Representative Attribute-Neighborhood)

  • 정경용;김진수;김태용;이정현
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.287-296
    • /
    • 2003
  • 추천 시스템에 있어서 협력적 필터링 기술은 많은 연구가 되고 있다. 그러나 협력적 필터링 기술을 이용한 추천 시스템은 초기 평가 문제와 희박성 문제가 발생한다. 이를 해결하기 위해서 본 논문에서는 선호도 재 계산을 위한 연관 사용자 군집과 베이지안 추정치를 이용한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서 아이템의 속성을 고려하지 않는 단점을 보완하기 위해서 선호도에 가장 크게 영향을 미치는 대표 장르를 추출하여 유사한 이웃을 찾아 낼 때 예측에 이용하는 Representative Attribute-Neighborhood 방법을 사용한다. 협력적 필터링의 알고리즘에 군집 아이템 백터 내의 특정 아이템의 선호도를 재계산 하기 위한 연관 사용자 군집 분석을 적용하여 성능 향상을 하였다. 또 초기 평가 문제와 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집한다. 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게하여 예측의 정확도를 높일 수 있다. 제안된 방법은 기존의 방법보다 높은 성능을 나타냄을 보인다.

Recent Developments in Discriminant Analysis fro man Information Geometric Point of View

  • Eguchi, Shinto;Copas, John B.
    • Journal of the Korean Statistical Society
    • /
    • 제30권2호
    • /
    • pp.247-263
    • /
    • 2001
  • This paper concerns a problem of classification based on training dta. A framework of information geometry is given to elucidate the characteristics of discriminant functions including logistic discrimination and AdaBoost. We discuss a class of loss functions from a unified viewpoint.

  • PDF

베이즈와 이산형 모형을 이용한 비율에 대한 추론 교수법의 고찰

  • 박태룡
    • 한국수학사학회지
    • /
    • 제13권1호
    • /
    • pp.99-112
    • /
    • 2000
  • In this paper we discuss the teaching methods about statistical inferences. Bayesian methods have the attractive feature that statistical conclusions can be stated using the language of subjective probability. Simple methods of teaching Bayes' rule described, and these methods are illustrated for inference and prediction problems for one proportions. Also, we discuss the advantages and disadvantages of traditional and Bayesian approachs in teaching inference.

  • PDF

베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템 (Preference Prediction System using Similarity Weight granted Bayesian estimated value and Associative User Clustering)

  • 정경용;최성용;임기욱;이정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.316-325
    • /
    • 2003
  • 기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 피어슨 상관 계수에 의해 사용자의 유사도를 구하고, 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다. 그 결과 기존의 협력적 필터링 기술의 문제점을 해결하여 예측의 정확도를 높이는데 효과적임을 확인하였다.

통계적 판단 이론을 이용한 워터마크 검출 알고리즘 (Watermark Detection Algorithm Using Statistical Decision Theory)

  • 권성근;김병주;이석환;권기구;권기용;이건일
    • 전자공학회논문지CI
    • /
    • 제40권1호
    • /
    • pp.39-49
    • /
    • 2003
  • 멀티미디어에 삽입된 워터마크의 검출은 저작권 보호 및 인증 분야에서 매우 중요한 역할을 한다. 최근 워터마크의 검출에 많이 사용되는 유사도 기반 알고리즘은 상가성 방법을 제외한 워터마크 삽입 방법에 대해서는 효과적이지 못한 단점을 가진다. 따라서 본 논문에서는 웨이블릿 변환 영역에서 상승적 방법에 의하여 삽입된 워터마크에 대한 효율적인 검출 알고리즘을 제안하였다. 제안한 워터마크 검출 알고리즘은 통계적 판단 이론에 따라 Bayes 판단 이론, Neyman-Pearson 정의, 및 웨이블릿 계수들의 확률 분포 모델을 기반으로 도출되어서, 주어진 오류 검출 확률에 대하여 간과 검출 확률을 최소화할 수 있다. 제안한 검출 알고리즘의 성능 평가는 견고성 측면에서 수행되었고, 실험 결과로부터 제안한 알고리즘이 유사도 기반 알고리즘에 비하여 우수한 성능을 나타냄을 확인하였다.

마코프 랜덤 필드를 이용한 움직이는 객체의 분할에 관한 연구 (Moving object segmentation using Markov Random Field)

  • 정철곤;김중규
    • 한국통신학회논문지
    • /
    • 제27권3A호
    • /
    • pp.221-230
    • /
    • 2002
  • 본 논문에서는 마코프 랜덤 필드를 이용해 움직이는 객체를 분할하는 새로운 방법을 제안하였다. 제안된 방법은 신호 탐지 이론에 기반을 두고 있다. 즉, 영상에서의 모션의 존재 유무는 binary decision rule에 의해 결정되고 잘못된 결정은 마코프 랜덤 필드 모델에 의해 수정된다. 전체적인 분할 과정은 2단계로 나뉘어진다. 첫 단계는 '모션탐지' 단계이며, 두번째 단계는 '객체분할' 단계이다. '모션탐지' 단계에서는 optical flow에 의해 발생하는 속도 벡터들에 대하여 binary decision rule을 적용하여 모tus의 존재 유무를 결정하는 과정이다. '객체분할' 단계에서는 첫 단계에서 원치 않게 발생하는 잡음을 제거한다. 이때 마코프 랜덤 필드로 가정하고 베이스 규칙에 의해 잡음을 제거한다. 실험결과, 연속영상에서 움직이는 객체의 영역을 효율적으로 분할함을 확인할 수 있었다.

최근점 이웃망에의한 참조벡터 학습 (Learning Reference Vectors by the Nearest Neighbor Network)

  • Kim Baek Sep
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.170-178
    • /
    • 1994
  • The nearest neighbor classification rule is widely used because it is not only simple but the error rate is asymptotically less than twice Bayes theoretical minimum error. But the method basically use the whole training patterns as the reference vectors. so that both storage and classification time increase as the number of training patterns increases. LVQ(Learning Vector Quantization) resolved this problem by training the reference vectors instead of just storing the whole training patterns. But it is a heuristic algorithm which has no theoretic background there is no terminating condition and it requires a lot of iterations to get to meaningful result. This paper is to propose a new training method of the reference vectors. which minimize the given error function. The nearest neighbor network,the network version of the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule and the reference vectors are represented by the weights between the nodes. The network is trained to minimize the error function with respect to the weights by the steepest descent method. The learning algorithm is derived and it is shown that the proposed method can adjust more reference vectors than LVQ in each iteration. Experiment showed that the proposed method requires less iterations and the error rate is smaller than that of LVQ2.

  • PDF

On the Bayesian Sequential Estiamtion Problem in k-Parameter Exponential Family

  • Yoon, Byoung-Chang;Kim, Jea-Joo
    • Journal of the Korean Statistical Society
    • /
    • 제10권
    • /
    • pp.128-139
    • /
    • 1981
  • The Bayesian sequential estimation problem for k parameters exponential families is considered using loss related to the Fisher information. Tractable expressions for the Bayes estimator and the posterior expected loss are found, and the myopic or one-step-ahead stopping rule is defined. Sufficient conditions are given for optimality of the myopic procedure, and the myopic procedure is shown to be asymptotically optimal in all cases considered.

  • PDF

영상특성에 기반한 통계적 판정법을 이용한 적응 워터마크 검출 알고리즘 (Adaptive Watermark Detection using Stochastical Decision Rule Based on Image characteristics)

  • 황의창;김희정;김현천;김종진;권기룡
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(상)
    • /
    • pp.104-107
    • /
    • 2003
  • 본 논문에서는 웨이브릿 영역에서 HVS 및 NVF 함수를 사용하여 영상특성에 기반한 통계적 판정법을 이용한 적응 워터마크 검출 알고리즘을 판정법을 제안한다. 워터마크는 4레벨로 분해된 웨이브릿 영역에서 JND(just noticeable difference) 특성과 NVF(noise visibility function)를 이용한 통계적 특성을 기반으로 정상상태 가우시안 모델에 따라 지각적 동조 특성을 이용하여 적응적으로 삽입하고, Bayes 이론 및 Neyman-Pearson 정리를 이용한 통계적 판정법을 이용하여 워터마크를 추출함으로써 기존의 통계적 판정법 보다 정확하게 워터마크 존재 유무를 판정 할 수 있음을 확인하였다.

  • PDF

베이즈 이론을 이용한 무선 센서 네트워크 기반의 위치 인식 기술 (Distributed localization using Bayes' rule in wireless Sensor Networks)

  • 공영배;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1821-1822
    • /
    • 2007
  • 무선 센서 네트워크에서 위치인식 기술은 데이터 수집, 라우팅, 위치기반 서비스와 같은 기술에 필수적인 기술이다. 본 논문에서는 베이즈 이론을 이용한 그리드방식의 분산형 위치 인식기술을 제안한다. 이 기법은 센서 노드들이 받은 신호세기를 바탕으로 하여 그리드를 구성해서 베이즈 이론을 이용하여 가장 큰 확률을 갖는 그리드를 자신의 위치로 인식하는 방식이다. 우리는 시뮬레이션을 통하여 기존의 방식보다 제안된 알고리즘이 정확한 위치를 갖으며, 더욱 효율적인 연산을 수행함을 알 수 있다.

  • PDF