• Title/Summary/Keyword: Bayberry tannin

Search Result 2, Processing Time 0.015 seconds

Synthesis of Thermally Stable Mesoporous Alumina by using Bayberry Tannin as Template in Aqueous System

  • Liu, Jing;Huang, Fuming;Liao, Xuepin;Shi, Bi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2650-2656
    • /
    • 2013
  • Mesoporous alumina was synthesized using bayberry tannin (BT) as template. This novel synthesis strategy was based on a precipitation method associated with aluminum nitrate as the source of aluminum in an aqueous system. $N_2$ adsorption/desorption, XRD, SEM and TEM were used to characterize the as-prepared mesoporous alumina. The results showed that the mesoporous alumina possessed crystalline pore wall, high specific surface area, narrow pore distribution and excellent thermal stability. Moreover, the surface area and pore size of the mesoporous alumina can be tuned by changing the experimental parameters. Further, the mesoporous alumina was investigated as the support of palladium catalyst ($Pd-Al_2O_3{^*}$) for the hydrogenation of propenyl, styrene and linoleic acid. For comparison, the reference catalyst ($Pd-Al_2O_3$) prepared without barberry tannin was also employed for the catalytic hydrogenation. The experimental results showed that $Pd-Al_2O_3{^*}$ exhibited the superior catalytic performance than $Pd-Al_2O_3$ for all the investigated substrates, especially for the hydrogenation of linoleic acid with larger molecular.

Bayberry Tannin as Stabilizer for the Synthesis of Highly Active and Reusable Heterogeneous Pd Catalysts and Their Application in the Catalytic Hydrogenation of Olefins

  • Chen, Chen;Lv, Guang;Huang, Xin;Liao, Xue Pin;Zhang, Wen Hua;Shi, Bi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.403-408
    • /
    • 2012
  • In this study, the homogenous Pd nanoparticles (Pd NPs) were first prepared with bayberry tannin (BT) as the stabilizers. Subsequently, the obtained bayberry tannin-stabilized Pd nanoparticles (BT-Pd) were immobilized onto ${\gamma}-Al_2O_3$ to prepare heterogeneous ${\gamma}-Al_2O_3$-BT-Pd catalysts. Fourier Transformation Infrared Spectrum (FTIR) and X-ray Photoelectron Spectroscopy (XPS) analyses confirmed that the Pd NPs were well stabilized by the phenolic hydroxyl groups of BT. Transmission Electron Microscopy (TEM) observation indicated that the diameter of the Pd NPs can be effectively controlled in the range of 4.2-16.0 nm by varying the amount of BT. It is found that the ${\gamma}-Al_2O_3$-BT-Pd catalysts exhibit highly activity for various olefin hydrogenations. For example, the initial TOF (turnover frequency) of the ${\gamma}-Al_2O_3$-BT-Pd in the allyl alcohol hydrogenation is as high as $12804 mol{\cdot}mol^{-1}{\cdot}h^{-1}$. Furthermore, the ${\gamma}-Al_2O_3$-BT-Pd can be reused 5 times without significant loss of activity, exhibiting a superior reusability as compared with conventionally prepared ${\gamma}-Al_2O_3$-Pd catalysts.