• 제목/요약/키워드: Baum-Welch Re-estimation algorithm

검색결과 4건 처리시간 0.021초

Baum-Welch 학습법을 이용한 HMM 기반 대역폭 확장법 (HMM-Based Bandwidth Extension Using Baum-Welch Re-Estimation Algorithm)

  • 송근배;김석호
    • 한국음향학회지
    • /
    • 제26권6호
    • /
    • pp.259-268
    • /
    • 2007
  • 본 논문에서는 HMM 기반 통계적인 대역폭 확장(Bandwidth Extension, BWE) 방법의 개선에 대해 다룬다. 이를 위해 우선, HMM 모델 학습을 위한 기존의 Jax의 학습법과 일반적인 Baum-Welch 학습법의 관계를 비교 검토하고, Jax의 학습법의 한계점 및 문제점을 검토한다. 그리고 이를 바탕으로 Baum-Welch학습법을 이용한 새로운 HMM 기반 BWE 방법을 제시한다. 결론적으로, Baum-Welch 학습법은 Jax의 학습법의 일반화된 형태로 볼 수 있으며, 보다 유연하고 적응적인 학습능력을 가진 알고리즘임을 알 수 있다. 따라서 학습 데이터에 대한 보다 정확한 HMM 모델링이 가능하며 아울러, 이와 같이 개선된 HMM 모델을 활용함으로써 BWE 시스템의 성능향상을 가져 올 수 있었다. 실험결과에 의하면, 제시된 새로운 방법이 기존의 Jax의 방법에 비해 실험의 모든 경우에서 우수한 성능을 보임을 알 수 있다. 주어진 실험조건하에서 근제곱평균(root-mean-square, RMS) 로그 스펙트럴 왜곡(Log Spectral Distortion, LSD) 값이 전체적으로 평균 0.52dB 그리고, 최소 0.31dB에서 최대 0.8dB까지 개선되었다.

음성신호의 대역폭 확장을 위한 GMM 방법 및 HMM 방법의 성능평가 (Performance Comparison of GMM and HMM Approaches for Bandwidth Extension of Speech Signals)

  • 송근배;김석호
    • 한국음향학회지
    • /
    • 제27권3호
    • /
    • pp.119-128
    • /
    • 2008
  • 본 논문에서는 대역폭 확장 (Bandwidth Extension, BWE)을 위한 대표적인 통계적 방법인 가우스 혼합 모델 (Gaussian Mixture Model, GMM) 방법과 은닉마코프 모델 (Hidden Markov Model, HMM) 방법의 관계를 분석하고 성능을 비교한다. HMM 방법은 GMM 방법과 달리 기억능력을 가진 시스템으로서 인접한 음성 프레임간의 상관성을 모델링하고 이를 BWE 시스템에 활용한다는 장점을 가진다. 따라서 원래 신호의 프레임간 스펙트럼 변화특성을 보다 잘 추정할 수 있으리라 예상할 수 있다. 이 점을 확인하기 위해 정적 측도 외에 음성 스펙트럼의 일차 도 함수와 관련된 동적 측도를 적용하였다. 성능평가 결과, 정적 측도 관점에서는 두 방법은 대등한 성능을 보였지만 동적 측도 관점에서는 HMM 방법이 우수한 성능을 보였다. 또한 이러한 차이는 HMM 모델의 상태 수에 비례하여 증가함을 확인할 수 있었다. 이와 같은 실험결과는 HMM 방법이 적어도 'blind BWE' 문제에 있어서 적절한 해법임을 시사한다. 한편, 동적 측도의 관점에서는 비록 열세로 나타났지만 GMM 방법은 상대적으로 단순하다는 장점을 가지고 있으며 특히, 정적 측도에 있어서 HMM 방법과 대등하다는 사실은 응용분야에 따라서는 HMM 방법의 효과적인 대안이 될 수 있음을 시사한다.

저작권 보호를 위한 HMM기반의 음악 식별 시스템 (HMM-based Music Identification System for Copyright Protection)

  • 김희동;김도현;김지환
    • 말소리와 음성과학
    • /
    • 제1권1호
    • /
    • pp.63-67
    • /
    • 2009
  • In this paper, in order to protect music copyrights, we propose a music identification system which is scalable to the number of pieces of registered music and robust to signal-level variations of registered music. For its implementation, we define the new concepts of 'music word' and 'music phoneme' as recognition units to construct 'music acoustic models'. Then, with these concepts, we apply the HMM-based framework used in continuous speech recognition to identify the music. Each music file is transformed to a sequence of 39-dimensional vectors. This sequence of vectors is represented as ordered states with Gaussian mixtures. These ordered states are trained using Baum-Welch re-estimation method. Music files with a suspicious copyright are also transformed to a sequence of vectors. Then, the most probable music file is identified using Viterbi algorithm through the music identification network. We implemented a music identification system for 1,000 MP3 music files and tested this system with variations in terms of MP3 bit rate and music speed rate. Our proposed music identification system demonstrates robust performance to signal variations. In addition, scalability of this system is independent of the number of registered music files, since our system is based on HMM method.

  • PDF

Human Action Recognition Based on 3D Human Modeling and Cyclic HMMs

  • Ke, Shian-Ru;Thuc, Hoang Le Uyen;Hwang, Jenq-Neng;Yoo, Jang-Hee;Choi, Kyoung-Ho
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.662-672
    • /
    • 2014
  • Human action recognition is used in areas such as surveillance, entertainment, and healthcare. This paper proposes a system to recognize both single and continuous human actions from monocular video sequences, based on 3D human modeling and cyclic hidden Markov models (CHMMs). First, for each frame in a monocular video sequence, the 3D coordinates of joints belonging to a human object, through actions of multiple cycles, are extracted using 3D human modeling techniques. The 3D coordinates are then converted into a set of geometrical relational features (GRFs) for dimensionality reduction and discrimination increase. For further dimensionality reduction, k-means clustering is applied to the GRFs to generate clustered feature vectors. These vectors are used to train CHMMs separately for different types of actions, based on the Baum-Welch re-estimation algorithm. For recognition of continuous actions that are concatenated from several distinct types of actions, a designed graphical model is used to systematically concatenate different separately trained CHMMs. The experimental results show the effective performance of our proposed system in both single and continuous action recognition problems.